login
A154609
a(n) = 13*n + 5.
9
5, 18, 31, 44, 57, 70, 83, 96, 109, 122, 135, 148, 161, 174, 187, 200, 213, 226, 239, 252, 265, 278, 291, 304, 317, 330, 343, 356, 369, 382, 395, 408, 421, 434, 447, 460, 473, 486, 499, 512, 525, 538, 551, 564, 577, 590, 603, 616, 629, 642, 655, 668, 681, 694
OFFSET
0,1
COMMENTS
Any square mod 13 is one of 0, 1, 3, 4, 9, 10 or 12 (A010376) but not 5, for this reason there are no squares in sequence. - Bruno Berselli, Feb 19 2016
FORMULA
From Vincenzo Librandi, Feb 26 2012: (Start)
G.f.: (5+8*x)/(1-x)^2.
a(n) = 2*a(n-1) - a(n-2). (End)
E.g.f.: (5 + 13*x)*exp(x). - G. C. Greubel, May 31 2024
MATHEMATICA
Range[5, 1000, 13] (* Vladimir Joseph Stephan Orlovsky, May 31 2011 *)
CoefficientList[Series[(8 x + 5)/(1 - x)^2, {x, 0, 60}], x] (* Vincenzo Librandi, Feb 26 2012 *)
PROG
(PARI) a(n)=13*n+5 \\ Charles R Greathouse IV, Dec 28 2011
(Magma) I:=[5, 18]; [n le 2 select I[n] else 2*Self(n-1)-Self(n-2): n in [1..50]]; // Vincenzo Librandi, Feb 26 2012
(SageMath) [13*n+5 for n in range(61)] # G. C. Greubel, May 31 2024
CROSSREFS
Cf. A010376,
Sequences of the form 13*n+q: A008595 (q=0), A190991 (q=1), A153080 (q=2), A127547 (q=4), this sequence (q=5), A186113 (q=6), A269044 (q=7), A269100 (q=11).
Sequence in context: A140365 A063294 A063141 * A063125 A031004 A063120
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Jan 15 2009
STATUS
approved