login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A153772
a(n) = (2^n + 2*(-1)^n - 6)/3.
6
-1, -2, 0, 0, 4, 8, 20, 40, 84, 168, 340, 680, 1364, 2728, 5460, 10920, 21844, 43688, 87380, 174760, 349524, 699048, 1398100, 2796200, 5592404, 11184808, 22369620, 44739240, 89478484, 178956968, 357913940, 715827880
OFFSET
0,2
COMMENTS
The array of T(n,k) with T(0,k) = A141325(k) and successive differences T(n,k) = T(n-1,k+1) - T(n-1,k) in further rows is
1, 1, 1, 1, 3, 5, 9, 13, 21, 33, 55,..
0, 0, 0, 2, 2, 4, 4, 8, 12, 22,..
0, 0, 2, 0, 2, 0, 4, 4, 10,...
0, 2, -2, 2, -2, 4, 0, 6,..
2, -4, 4, -4, 6, -4, 6,..
-6, 8, -8, 10, -10, 10,...
with T(n,n) = A078008(n), T(n,n+1) = -A167030(n), T(n,n+2) = A128209(n), T(n,n+3) = -a(n). All these sequences along the diagonals obey the recurrences a(n) = 2*a(n-1) + a(n-2) - 2*a(n-3) and a(n) = 5*a(n-2) - 4*a(n-4).
Conjecture: For n >= 6, a(n) is the third largest natural number whose Collatz orbit has length n+2. - Markus Sigg, Sep 14 2020
FORMULA
a(n) = A078008(n) - 2.
a(n) = +2*a(n-1) +a(n-2) -2*a(n-3).
a(n) = a(n-1) + 2*a(n-2) + 4.
G.f.: (1 - 5*x^2) / ( (1-x)*(2*x-1)*(1+x) ).
E.g.f.: (1/3)*(2*exp(-x) - 6*exp(x) + exp(2*x)). - G. C. Greubel, Aug 27 2016
a(n) = 4*A000975(n-3) for n >= 3. - Markus Sigg, Sep 14 2020
MATHEMATICA
Table[(2^n + 2*(-1)^n - 6)/3, {n, 0, 25}] (* or *) LinearRecurrence[{2, 1, -2}, {-1, -2, 0}, 25] (* G. C. Greubel, Aug 27 2016 *)
PROG
(Magma) [2^n/3 +2*(-1)^n/3-2: n in [0..40]]; // Vincenzo Librandi, Aug 07 2011
(PARI) a(n)=(2^n+2*(-1)^n-6)/3 \\ Charles R Greathouse IV, Aug 28 2016
CROSSREFS
KEYWORD
easy,sign
AUTHOR
Paul Curtz, Jan 01 2009
STATUS
approved