login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A153731
Triangle read by rows: nonzero coefficients of Swinnerton-Dyer polynomials.
5
1, -2, 1, 1, -10, 1, 576, -960, 352, -40, 1, 46225, -5596840, 13950764, -7453176, 1513334, -141912, 6476, -136, 1, 2000989041197056, -44660812492570624, 183876928237731840, -255690851718529024, 172580952324702208, -65892492886671360, 15459151516270592
OFFSET
0,2
COMMENTS
Within each row, coefficients are listed in order of increasing degree. The n-th row lists the coefficients of the polynomial corresponding to the set {2, 3, ..., prime(n)}. All odd-degree terms have coefficient 0.
REFERENCES
Roman E. Maeder. Programming in Mathematica, Addison-Wesley, 1990, page 105.
LINKS
Lucas A. Brown, Python program.
Eric Weisstein's World of Mathematics, Swinnerton-Dyer Polynomial.
EXAMPLE
The first few rows are:
[0] 1;
[1] -2, 1;
[2] 1, -10, 1;
[3] 576, -960, 352, -40, 1;
[4] 46225, -5596840, 13950764, -7453176, 1513334, -141912, 6476, -136, 1;
....
x, -2 + x^2, 1 - 10*x^2 + x^4, 576 - 960*x^2 + 352*x^4 - 40*x^6 + x^8, ...
MAPLE
p:= proc(n) option remember; expand(`if`(n=0, x, mul(
subs(x=x+i*sqrt(ithprime(n)), p(n-1)), i=[1, -1])))
end:
T:= n-> ListTools[Reverse]([coeffs(p(n))])[]:
seq(T(n), n=0..5); # Alois P. Heinz, Nov 28 2024
MATHEMATICA
SwinnertonDyerP[0, x_ ] := x; SwinnertonDyerP[n_, x_ ] := Module[{sd, srp = Sqrt[Prime[n]]}, sd[y_] = SwinnertonDyerP[n - 1, y]; Expand[ sd[x + srp] sd[x - srp] ] ]; row[n_] := CoefficientList[ SwinnertonDyerP[n, x], x^2]; Table[row[n], {n, 1, 5}] // Flatten (* Jean-François Alcover, Nov 09 2012 *)
(* Second program: *)
SwinnertonDyerP[n_Integer?Positive, x_] :=
Block[{arg, poly, i},
args = Outer[Times, Table[Sqrt[Prime[i]], {i, n}], {-1, 1}];
poly = Outer[Plus, {x}, Sequence @@ args];
Expand[Times @@ Flatten[poly]]]
Table[Select[CoefficientList[SwinnertonDyerP[n, x], x], # != 0 &], {n, 1, 4}] // TableForm (* Peter Luschny, Jun 12 2022 *)
PROG
(Julia)
using Nemo
function A153731Row(n)
R, x = PolynomialRing(ZZ, "x")
p = swinnerton_dyer(n, x)
[coeff(p, j) for j in 0:2:2^n] end
for n in 1:4 A153731Row(n) |> println end # Peter Luschny, Mar 13 2018
(Magma) // Note that Magma, like Mathworld, defines the polynomials for n >= 1.
P<x> := PolynomialRing(IntegerRing());
for n := 1 to 5 do
p := SwinnertonDyerPolynomial(n);
[c : c in Coefficients(p) | not IsZero(c)];
end for; // Peter Luschny, Jun 12 2022
(Python) # See LINKS
CROSSREFS
Cf. A247209, A354913 (left column).
Sequence in context: A348455 A348453 A345748 * A262226 A298158 A154989
KEYWORD
sign,look,tabf
AUTHOR
Eric W. Weisstein, Dec 31 2008
EXTENSIONS
One term (row 0) prepended by Alois P. Heinz, Nov 28 2024
STATUS
approved