This site is supported by donations to The OEIS Foundation.

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A153149 Coefficients of the eighth order mock theta function S_1(q) 7
 1, 0, 0, 1, 1, -1, -1, 1, 2, 0, -2, 1, 2, -2, -2, 2, 3, -1, -2, 2, 2, -3, -4, 3, 5, -2, -4, 3, 5, -4, -6, 4, 7, -4, -7, 5, 7, -6, -9, 7, 11, -6, -10, 7, 11, -9, -14, 9, 15, -9, -14, 11, 16, -13, -19, 13, 21, -12, -22, 15, 23, -18, -26, 19, 30, -19, -30, 21, 31 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,9 LINKS B. Gordon and R. J. McIntosh, Some eighth order mock theta functions, J. London Math. Soc. 62 (2000), 321-335. FORMULA G.f.: Sum_{n >= 0} q^(n^2+2n) (1+q)(1+q^3)...(1+q^(2n-1))/(1+q^2)(1+q^4)...(1+q^(2n)) PROG (PARI) lista(nn) = my(q = qq + O(qq^nn)); gf = sum(n = 0, nn, q^(n^2+2*n) * prod(k = 1, n, 1 + q^(2*k-1)) / prod(k = 1, n, 1 + q^(2*k))); Vec(gf) \\ Michel Marcus, Jun 18 2013 CROSSREFS Other '8th order' mock theta functions are at A153148, A153155, A153156, A153172, A153174, A153176, A153178. Sequence in context: A141454 A219791 A029345 * A249072 A174007 A045450 Adjacent sequences:  A153146 A153147 A153148 * A153150 A153151 A153152 KEYWORD sign AUTHOR Jeremy Lovejoy, Dec 19 2008 EXTENSIONS More terms from Michel Marcus, Feb 23 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.