%I #4 Feb 08 2022 23:23:38
%S 1,1,1,1,1,2,3,1,2,4,7,3,2,4,10,23,7,6,4,10,26,71,23,14,12,10,26,76,
%T 255,71,46,28,30,26,76,232,911,255,142,92,70,78,76,232,764,3535,911,
%U 510,284,230,182,228,232,764,2620
%N Triangle read by rows: M*Q, where M = an infinite lower triangular matrix with A140456 in every column: (1, 1, 1, 3, 7, 23, 71, ...) and Q = a matrix with A000085 as the main diagonal the rest zeros.
%C An eigentriangle.
%C Row sums = A000085 starting with offset 1.
%C Sum of n-th row terms = rightmost term of next row.
%e First few rows of the triangle:
%e 1;
%e 1, 1;
%e 1, 1, 2;
%e 3, 1, 2, 4;
%e 7, 3, 2, 4, 10;
%e 23, 7, 6, 4, 10, 26;
%e 71, 23, 14, 12, 10, 26, 76;
%e 255, 71, 46, 28, 30, 26, 76, 232;
%e 911, 255, 142, 92, 70, 78, 76, 232, 764;
%e 3535, 911, 510, 284, 230, 182, 228, 232, 764, 2620;
%e 13903, 3535, 1822, 1020, 710, 598, 532, 696, 764, 2620, 9496;
%e ...
%e Row r = (3, 1, 2, 4) = (3*1, 1*1, 1*2, 1*4) = termwise products of (3, 1, 1, 1) and (1, 1, 2, 4), where A000085 = (1, 1, 2, 4, 10, 26, 76, ...).
%Y Cf. A000085, A140456.
%K eigen,nonn,tabl
%O 1,6
%A _Gary W. Adamson_, Dec 12 2008