The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A152660 Triangle read by rows: T(n,k) is the number of permutations of [n] for which k is the maximal number of initial entries whose parities alternate (1 <= k <= n). 1

%I #15 Nov 28 2017 10:59:37

%S 1,0,2,2,2,2,8,8,0,8,48,36,12,12,12,288,216,72,72,0,72,2160,1440,576,

%T 432,144,144,144,17280,11520,4608,3456,1152,1152,0,1152,161280,100800,

%U 43200,28800,11520,8640,2880,2880,2880,1612800,1008000,432000,288000,115200,86400,28800,28800,0,28800

%N Triangle read by rows: T(n,k) is the number of permutations of [n] for which k is the maximal number of initial entries whose parities alternate (1 <= k <= n).

%C Sum of entries in row n is n! (=A000142(n)).

%C T(n,n) = A092186(n) (the parity alternating permutations; see the Tanimoto reference).

%C T(n,1) = A152661(n).

%H S. Tanimoto, <a href="http://arxiv.org/abs/0812.1839">Combinatorial study on the group of parity alternating permutations</a>, arXiv:0812.1839 [math.CO], 2008-2017.

%F T(2n,k) = 2(n!)^2*binomial(2n-k-1, n-floor(k/2));

%F T(2n+1,2k) = n!(n+1)!*binomial(2n-2k+1, n-k);

%F T(2n+1,2k+1) = n!(n+1)!*binomial(2n-2k, n-k-1) if k < n;

%F T(2n+1,2n+1) = n!(n+1)!.

%e T(4,2)=8 because we have 1243, 1423, 2134, 2314, 3241, 3421, 4132 and 4312.

%e Triangle starts:

%e 1;

%e 0, 2;

%e 2, 2, 2;

%e 8, 8, 0, 8;

%e 48, 36, 12, 12, 12;

%e 288, 216, 72, 72, 0, 72;

%p T := proc (n, k) if n < k then 0 elif `mod`(n, 2) = 0 and `mod`(k, 2) = 0 then 2*factorial((1/2)*n)^2*binomial(n-k-1, (1/2)*n-(1/2)*k) elif `mod`(n, 2) = 0 and `mod`(k, 2) = 1 then 2*factorial((1/2)*n)^2*binomial(n-k-1, (1/2)*n-(1/2)*k+1/2) elif `mod`(n, 2) = 1 and `mod`(k, 2) = 0 then factorial((1/2)*n-1/2)*factorial((1/2)*n+1/2)*binomial(n-k, (1/2)*n-(1/2)*k-1/2) elif `mod`(n, 2) = 1 and k = n then factorial((1/2)*n-1/2)*factorial((1/2)*n+1/2) else factorial((1/2)*n-1/2)*factorial((1/2)*n+1/2)*binomial(n-k, (1/2)*n-(1/2)*k-1) end if end proc: for n to 10 do seq(T(n, k), k = 1 .. n) end do; # yields sequence in triangular form

%t T[n0_?EvenQ, k_] := With[{n = n0/2}, 2 (n!)^2*Binomial[2 n - k - 1, n - Floor[k/2]]];

%t T[n1_?OddQ, k0_?EvenQ] := With[{n = (n1 - 1)/2, k = k0/2}, n! (n + 1)! * Binomial[2 n - 2 k + 1, n - k] ];

%t T[n1_?OddQ, k1_?OddQ] := With[{n = (n1 - 1)/2, k = (k1 - 1)/2}, n! (n+1)! * Binomial[2 n - 2 k, n - k - 1] ];

%t T[n1_?OddQ, n1_?OddQ] := With[{n = (n1 - 1)/2}, n! (n + 1)!];

%t Table[T[n, k], {n, 1, 10}, {k, 1, n}] // Flatten (* _Jean-François Alcover_, Nov 28 2017 *)

%Y Cf. A000142, A092186, A152661.

%K nonn,tabl

%O 1,3

%A _Emeric Deutsch_, Dec 12 2008

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 13 05:24 EDT 2024. Contains 372498 sequences. (Running on oeis4.)