OFFSET
1,3
COMMENTS
The g.f.s for this sequence illustrates the following formula:
log(e_q(x,q)) = Sum_{n>=1} (1-q)^n/(1-q^n)*x^n/n, where
e_q(x,q) = Sum_{n>=0} x^n/faq(n,q) is the q-exponential of x and
faq(n,q) = Product_{k=1..n} (q^k-1)/(q-1) is the q-factorial of n.
LINKS
Eric Weisstein, q-Exponential Function from MathWorld.
Eric Weisstein, q-Factorial from MathWorld.
FORMULA
L.g.f.: log(e_q(x,-x)) = log(Sum_{n>=0} x^n/[Product_{k=1..n} (1-(-x)^k)/(1+x)]).
L.g.f.: log(e_q(x,-x)) = Sum_{n>=1} x^n*(1+x)^n/(1-(-x)^n)/n.
EXAMPLE
L.g.f.: log(e_q(x,-x)) = x + x^2/2 + 4*x^3/3 + 9*x^4/4 + 16*x^5/5 + 22*x^6/6 +...
e_q(x,-x) = 1 + x + x^2 + 2*x^3 + 4*x^4 + 7*x^5 + 11*x^6 + 17*x^7 +... (A152398).
PROG
(PARI) a(n)=n*polcoeff(log(sum(k=0, n, x^k/(prod(j=1, k, (1-(-x)^j)/(1+x))+x*O(x^n)))), n)
(PARI) a(n)=polcoeff(sum(k=1, n, x^k*(1+x)^k/(1-(-x)^k)/k)+x*O(x^n), n)
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Dec 16 2008
STATUS
approved