login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A152391 Triangle T, read by rows, where the matrix square T^2 results in shifting T right one column to drop the secondary diagonal. 8
1, 1, 1, 4, 2, 1, 18, 6, 3, 1, 96, 28, 8, 4, 1, 580, 150, 40, 10, 5, 1, 3852, 930, 216, 54, 12, 6, 1, 27678, 6286, 1386, 294, 70, 14, 7, 1, 212224, 46120, 9552, 1960, 384, 88, 16, 8, 1, 1722312, 359946, 71820, 13770, 2664, 486, 108, 18, 9, 1, 14685140, 2973650, 571440, 106290, 19060, 3510, 600, 130, 20, 10, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,4

LINKS

Paul D. Hanna, Table of n, a(n) for n = 0..350

FORMULA

T(n, k) = Sum_{j=k+1..n} T(n,j) * T(j,k+1) for n > k+1 >= 1 with T(n+1,n)=n+1 and T(n,n)=1 for n >= 0.

EXAMPLE

Triangle T begins:

1;

1, 1;

4, 2, 1;

18, 6, 3, 1;

96, 28, 8, 4, 1;

580, 150, 40, 10, 5, 1;

3852, 930, 216, 54, 12, 6, 1;

27678, 6286, 1386, 294, 70, 14, 7, 1;

212224, 46120, 9552, 1960, 384, 88, 16, 8, 1;

1722312, 359946, 71820, 13770, 2664, 486, 108, 18, 9, 1;

14685140, 2973650, 571440, 106290, 19060, 3510, 600, 130, 20, 10, 1; ...

Illustrate recurrence by products of row and column vectors:

T(4,1) = [8,4,1]*[1,3,8]~ = 8*1 + 4*3 + 1*8 = 28;

T(6,0) = [930,216,54,12,6,1]*[1,2,6,28,150,930]~ = 3852;

T(7,0) = [6286,1386,294,70,14,7,1]*[1,2,6,28,150,930,6286]~ = 27678.

T(8,1) = [9552,1960,384,88,16,8,1]*[1,3,8,40,216,1386,9552]~ = 46120.

T(9,3) = [2664,486,108,18,9,1]*[1,5,12,70,384,2664]~ = 13770.

Matrix square T^2 begins:

1;

2, 1;

10, 4, 1;

54, 18, 6, 1;

324, 96, 28, 8, 1;

2130, 580, 150, 40, 10, 1;

15102, 3852, 930, 216, 54, 12, 1;

114282, 27678, 6286, 1386, 294, 70, 14, 1; ...

which equals T shifted right one column with the secondary diagonal dropped.

PROG

(PARI) {T(n, k) = if(n==k, 1, if(n==k+1, n, sum(j=k+1, n, T(n, j)*T(j, k+1) )))}

for(n=0, 10, for(k=0, n, print1(T(n, k), ", ")); print(""))

(PARI) /* Build an N X N Matrix (informal) */

{M = matrix(N, N, n, k, if(n==k, 1, if(n==k+1, n)) ); }

{T(n, k) = M[n+1, k+1] = if(n==k, 1, if(n==k+1, n, sum(j=k+1, n, T(n, j) * M[j+1, k+2] )))}

for(n=0, N, for(k=0, n, print1(T(n, k), ", ")); print("")) \\ Paul D. Hanna, Jan 13 2016

CROSSREFS

Cf. columns: A152392, A152393, A152394; A152395.

Cf. A109152.

Sequence in context: A269736 A264535 A256039 * A144088 A039948 A111536

Adjacent sequences:  A152388 A152389 A152390 * A152392 A152393 A152394

KEYWORD

nonn,tabl,changed

AUTHOR

Paul D. Hanna, Dec 11 2008

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 24 18:03 EDT 2019. Contains 322430 sequences. (Running on oeis4.)