login
Marsaglia-Zaman type recursive sequence: f(x)=f(x - 2) + f(x - 3) + Floor[f(x - 1)/10]; a(n)=Mod[f(n),10].
0

%I #2 Mar 30 2012 17:34:28

%S 1,1,1,2,2,3,4,5,7,9,2,7,2,1,2,7,8,6,5,8,0,0,5,0,4,9,2,9,1,0,0,6,0,5,

%T 6,1,5,7,7,4,5,9,2,7,8,0,2,6,9,0,6,1,4,4,7,4,3,5,2,2,1,0,8,3,2,8,0,7,

%U 9,4,2,0,8,7,2,4,2,6,9,9,9,0,6,2,6,5,6,8,3,7,9,4,9,6,4,1,7,9,7,1,4

%N Marsaglia-Zaman type recursive sequence: f(x)=f(x - 2) + f(x - 3) + Floor[f(x - 1)/10]; a(n)=Mod[f(n),10].

%D Ivars Peterson, The Jungles of Randomness, 1998, John Wiley and Sons, Inc., page 207

%F f(x)=f(x - 2) + f(x - 3) + Floor[f(x - 1)/10];

%F a(n)=Mod[f(n),10].

%t f[0] = f[1] = f[2] = 1;

%t f[x_] := f[x] = f[x - 2] + f[x - 3] + Floor[f[x - 1]/10];

%t Table[Mod[f[n], 10], {n, 0, 100}]

%K nonn

%O 0,4

%A _Roger L. Bagula_, Dec 02 2008