OFFSET
0,3
COMMENTS
The antidiagonal sums of A091894 equal this sequence. - Johannes W. Meijer, Sep 13 2012
LINKS
Robert Israel, Table of n, a(n) for n = 0..2025
Jean-Luc Baril, Sergey Kirgizov, and Armen Petrossian, Forests and pattern-avoiding permutations modulo pure descents, Permutation Patterns 2017, Reykjavik University, Iceland, June 26-30, 2017. See Section 5.
Jean-Luc Baril and José Luis Ramírez, Descent distribution on Catalan words avoiding ordered pairs of Relations, arXiv:2302.12741 [math.CO], 2023.
Paul Barry, Jacobsthal Decompositions of Pascal's Triangle, Ternary Trees, and Alternating Sign Matrices, Journal of Integer Sequences, 19, 2016, #16.3.5.
Paul Barry, Riordan Pseudo-Involutions, Continued Fractions and Somos 4 Sequences, arXiv:1807.05794 [math.CO], 2018.
Shu-Chung Liu, Jun Ma, and Yeong-Nan Yeh, Dyck Paths with Peak- and Valley-Avoiding Sets, Stud. Appl Math. 121 (3) (2008) 263-289.
FORMULA
G.f.: (1 - 2*x + 2*x^2 - sqrt(1 - 4*x + 4*x^2 - 4*x^3))/(2*x^2).
Conjecture: (n+2)*a(n) - 2*(2*n+1)*a(n-1) + 4*(n-1)*a(n-2) + 2*(5-2*n)*a(n-3)=0. - R. J. Mathar, Aug 14 2012
This conjecture follows from the differential equation (4*x^4-4*x^3+4*x^2-x)*y' + (2*x^3-4*x^2+6*x-2)*y - 2*x^3+2*x^2-3*x+2=0 satisfied by the g.f. - Robert Israel, Jan 09 2018
MAPLE
f:= gfun:-rectoproc({(n+2)*a(n) - 2*(2*n+1)*a(n-1) + 4*(n-1)*a(n-2) + 2*(5-2*n)*a(n-3)=0, a(0)=1, a(1)=1, a(2)=2, a(3)=4}, a(n), remember):
map(f, [$0..40]); # Robert Israel, Jan 09 2018
MATHEMATICA
CoefficientList[Series[(1 - 2 x + 2 x^2 - Sqrt[1 - 4 x + 4 x^2 - 4 x^3])/(2 x^2), {x, 0, 30}], x] (* Michael De Vlieger, Jan 09 2018 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Majun (majun(AT)math.sinica.edu.tw), Nov 29 2008
EXTENSIONS
Edited by Emeric Deutsch, Dec 20 2008
STATUS
approved