login
A152158
A sequence set up on the first 1000 base ten Pi digits: a(n)=a(n-1)+a(n-2)*Floor[Mod[N[Pi*10^(n - 2), 1000], 10]].
1
0, 1, 1, 2, 6, 8, 38, 110, 186, 846, 1776, 4314, 13194, 47706, 166452, 500394, 1998462, 3499644, 7496568, 17995500, 77968044, 149950044, 617758308, 917658396, 4624208244, 8294841828, 22167466560, 47051992044, 224391724524
OFFSET
0,4
COMMENTS
The idea here is to associate a normal Hermite type distribution of the sort: a(n)=a(n-1)+f(n-2)*a(n-2); with the Pi digits.
LINKS
FORMULA
a(n) = a(n-1) + a(n-2)*floor( Pi*10^(n-2) mod 10 ).
MATHEMATICA
Clear[a, n]; a[0] = 0; a[1] = 1; a[n_] := a[n] = a[n - 1] + Floor[Mod[N[Pi*10^(n - 2), 1000], 10]]*a[n - 2]; Table[a[n], {n, 0, 30}]
CROSSREFS
Sequence in context: A117542 A045653 A235320 * A291782 A327271 A335111
KEYWORD
nonn,base
AUTHOR
STATUS
approved