login
Write n as a sum of positive squares a^2+b^2+c^2+... with gcd(a,b,...) = 1; a(n) = minimal number of squares needed.
3

%I #4 Mar 30 2012 17:38:16

%S 1,2,3,4,2,3,4,5,3,2,3,4,2,3,4,5,2,3,3,4,3,3,4,5,2,2,3,4,2,3,4,5,3,2,

%T 3,4,2,3,4,5,2,3,3,4,3,3,4,5,3,2,3,4,2,3,4,5,3,2,3,4,2,3,4,5,2,3,3,4,

%U 3,3,4,5,2,2,3,4,3,3,4,5,3,2,3,4,2,3,4,5,2,3,3,4,3,3,4,5,2,3,3

%N Write n as a sum of positive squares a^2+b^2+c^2+... with gcd(a,b,...) = 1; a(n) = minimal number of squares needed.

%C Similar to A002828, but only now primitive representations are allowed.

%C Of course a(n) >= A002828(n).

%C From Lagrange's theorem, a(n) <= 5 (see also Estermann, Grosswald, Th. 3, p. 176).

%C Furthermore, it appears (and should be easy to prove) that:

%C a(n) = 1 iff n=1

%C a(n) = 2 iff n in A008784\{1}

%C a(n) = 3 iff n in A151926

%C a(n) = 4 iff n == 4 or 7 mod 8

%C a(n) = 5 iff n == 0 mod 8

%D Estermann, T., On the representations of a number as a sum of squares, Acta Arith., 45 (1937), 93-125.

%D E. Grosswald, Representations of Integers as Sums of Squares. Springer-Verlag, NY, 1985.

%H N. J. A. Sloane, <a href="/A151925/b151925.txt">Table of n, a(n) for n = 1..1000</a>

%H N. J. A. Sloane, <a href="/A151925/a151925.txt">Fortran program</a>

%e ..... n .. a(n) ..<- Numbers when squared add to n ->

%e -----------------------------------------------------

%e ......1......1......1

%e ......2......2......1......1

%e ......3......3......1......1......1

%e ......4......4......1......1......1......1

%e ......5......2......1......2

%e ......6......3......1......1......2

%e ......7......4......1......1......1......2

%e ......8......5......1......1......1......1......2

%e ......9......3......1......2......2

%e .....10......2......1......3

%e .....11......3......1......1......3

%e .....12......4......1......1......1......3

%e .....13......2......2......3

%e .....14......3......1......2......3

%e .....15......4......1......1......2......3

%e .....16......5......1......1......1......2......3

%e .....17......2......1......4

%e .....18......3......1......1......4

%e .....19......3......1......3......3

%e .....20......4......1......1......3......3

%K nonn

%O 1,2

%A _N. J. A. Sloane_ and _Vinay Vaishampayan_, Aug 06 2009, Aug 07 2009