login
A151453
Number of walks within N^2 (the first quadrant of Z^2) starting at (0,0), ending on the vertical axis and consisting of 2 n steps taken from {(-1, 0), (-1, 1), (1, -1), (1, 0), (1, 1)}.
0
1, 4, 42, 578, 9166, 158242, 2891042, 54993704, 1078134132, 21636311154, 442364872960, 9182624116200, 193028135699066, 4100926056901840, 87917821096174026, 1899625977112716534, 41325695763293346504, 904431694783758568086, 19899310516710760870766, 439903811117457581870242
OFFSET
0,2
LINKS
M. Bousquet-Mélou and M. Mishna, 2008. Walks with small steps in the quarter plane, ArXiv 0810.4387.
MATHEMATICA
aux[i_Integer, j_Integer, n_Integer] := Which[Min[i, j, n] < 0 || Max[i, j] > n, 0, n == 0, KroneckerDelta[i, j, n], True, aux[i, j, n] = aux[-1 + i, -1 + j, -1 + n] + aux[-1 + i, j, -1 + n] + aux[-1 + i, 1 + j, -1 + n] + aux[1 + i, -1 + j, -1 + n] + aux[1 + i, j, -1 + n]]; Table[Sum[aux[0, k, 2 n], {k, 0, 2 n}], {n, 0, 25}]
CROSSREFS
Sequence in context: A268542 A249928 A156440 * A234507 A153854 A216080
KEYWORD
nonn,walk
AUTHOR
Manuel Kauers, Nov 18 2008
STATUS
approved