login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Number of walks within N^3 (the first octant of Z^3) starting at (0,0,0) and consisting of n steps taken from {(-1, -1, 1), (0, 1, -1), (0, 1, 1), (1, 0, 0), (1, 1, 1)}.
0

%I #4 Dec 27 2023 21:46:44

%S 1,3,12,53,244,1150,5513,26638,129726,634927,3119000,15370005,

%T 75910657,375609808,1861362004,9235122359,45866590554,227989444738,

%U 1134063002805,5644442597704,28107729018221,140029836266989,697879124395952,3479223158959041,17350384173320732,86545650442821405

%N Number of walks within N^3 (the first octant of Z^3) starting at (0,0,0) and consisting of n steps taken from {(-1, -1, 1), (0, 1, -1), (0, 1, 1), (1, 0, 0), (1, 1, 1)}.

%H A. Bostan and M. Kauers, 2008. Automatic Classification of Restricted Lattice Walks, <a href="http://arxiv.org/abs/0811.2899">ArXiv 0811.2899</a>.

%t aux[i_Integer, j_Integer, k_Integer, n_Integer] := Which[Min[i, j, k, n] < 0 || Max[i, j, k] > n, 0, n == 0, KroneckerDelta[i, j, k, n], True, aux[i, j, k, n] = aux[-1 + i, -1 + j, -1 + k, -1 + n] + aux[-1 + i, j, k, -1 + n] + aux[i, -1 + j, -1 + k, -1 + n] + aux[i, -1 + j, 1 + k, -1 + n] + aux[1 + i, 1 + j, -1 + k, -1 + n]]; Table[Sum[aux[i, j, k, n], {i, 0, n}, {j, 0, n}, {k, 0, n}], {n, 0, 10}]

%K nonn,walk

%O 0,2

%A _Manuel Kauers_, Nov 18 2008