login
A151159
Number of walks within N^3 (the first octant of Z^3) starting at (0,0,0) and consisting of n steps taken from {(-1, -1, 0), (0, 1, 0), (0, 1, 1), (1, 0, 1), (1, 1, -1)}.
0
1, 3, 11, 47, 211, 967, 4545, 21595, 103560, 500728, 2432736, 11872654, 58147671, 285541655, 1405564858, 6931965131, 34241853082, 169380533106, 838827662629, 4158357094931, 20632504860970, 102449894560199, 509051595998291, 2530853483373135, 12589174896257329, 62650955770516782, 311914797202148112
OFFSET
0,2
LINKS
A. Bostan and M. Kauers, 2008. Automatic Classification of Restricted Lattice Walks, ArXiv 0811.2899.
MATHEMATICA
aux[i_Integer, j_Integer, k_Integer, n_Integer] := Which[Min[i, j, k, n] < 0 || Max[i, j, k] > n, 0, n == 0, KroneckerDelta[i, j, k, n], True, aux[i, j, k, n] = aux[-1 + i, -1 + j, 1 + k, -1 + n] + aux[-1 + i, j, -1 + k, -1 + n] + aux[i, -1 + j, -1 + k, -1 + n] + aux[i, -1 + j, k, -1 + n] + aux[1 + i, 1 + j, k, -1 + n]]; Table[Sum[aux[i, j, k, n], {i, 0, n}, {j, 0, n}, {k, 0, n}], {n, 0, 10}]
CROSSREFS
Sequence in context: A151157 A151158 A055731 * A151160 A151161 A227846
KEYWORD
nonn,walk
AUTHOR
Manuel Kauers, Nov 18 2008
STATUS
approved