login
A148747
Number of walks within N^3 (the first octant of Z^3) starting at (0,0,0) and consisting of n steps taken from {(-1, 0, 0), (-1, 1, 1), (1, -1, 0), (1, 0, -1), (1, 0, 0)}.
0
1, 1, 3, 7, 27, 87, 361, 1319, 5715, 22521, 100367, 415235, 1886385, 8073371, 37195897, 163184991, 759886449, 3397005989, 15951150479, 72362430593, 342075234779, 1570128725741, 7463295523933, 34585271828523, 165148822870611, 771377322247203, 3697702453493303, 17386020857727765, 83618609128148883
OFFSET
0,3
LINKS
A. Bostan and M. Kauers, 2008. Automatic Classification of Restricted Lattice Walks, ArXiv 0811.2899.
MATHEMATICA
aux[i_Integer, j_Integer, k_Integer, n_Integer] := Which[Min[i, j, k, n] < 0 || Max[i, j, k] > n, 0, n == 0, KroneckerDelta[i, j, k, n], True, aux[i, j, k, n] = aux[-1 + i, j, k, -1 + n] + aux[-1 + i, j, 1 + k, -1 + n] + aux[-1 + i, 1 + j, k, -1 + n] + aux[1 + i, -1 + j, -1 + k, -1 + n] + aux[1 + i, j, k, -1 + n]]; Table[Sum[aux[i, j, k, n], {i, 0, n}, {j, 0, n}, {k, 0, n}], {n, 0, 10}]
CROSSREFS
Sequence in context: A148745 A148746 A372650 * A216078 A148748 A148749
KEYWORD
nonn,walk
AUTHOR
Manuel Kauers, Nov 18 2008
STATUS
approved