%I #13 Jun 05 2016 23:33:11
%S 18,883,23566,5278979,380087174,66895348819,13914232622662,
%T 178102177617521,4036982692723202,6136213692944321089,
%U 32726473029037904778,72260052448115886127009,2890402097924635887833902
%N Numerator of the polynomial A_l(x) = sum_{d=1..l-1} x^(l-d)/d for index l=2n+1 evaluated at x=4.
%C For denominators see A145616. For general properties of A_l(x) see A145609.
%t m = 4; aa = {}; Do[k = 0; Do[k = k + m^(2 r + 1 - d)/d, {d, 1, 2 r}]; AppendTo[aa, Numerator[k]], {r, 1, 25}]; aa (* _Artur Jasinski_ *)
%t a[n_,m_]:=Integrate[(m-x^n)/(m-x),{x,0,1}]+(m^n-m)Log[m/(m-1)]Table[4 a[2 n, 4] // FullSimplify // Numerator, {n,1,25}] (* _Gerry Martens_ , Jun 04 2016 *)
%Y Cf. A145609 - A145640.
%K frac,nonn
%O 1,1
%A _Artur Jasinski_, Oct 14 2008
%E Edited by _R. J. Mathar_, Aug 21 2009