login
A145417
Number of 2-factors in P_8 X P_n.
2
0, 13, 27, 2953, 24360, 972080, 13049563, 360783593, 6044482889, 142205412782, 2645920282312, 57787769198498, 1130122135817708, 23838761889677477, 477334902804794530, 9905649696435264827, 200572437515846530901, 4130348948437378850158
OFFSET
1,2
REFERENCES
F. Faase, On the number of specific spanning subgraphs of the graphs G X P_n, Ars Combin. 49 (1998), 129-154.
LINKS
F. Faase, On the number of specific spanning subgraphs of the graphs G X P_n, Preliminary version of paper that appeared in Ars Combin. 49 (1998), 129-154.
FORMULA
Recurrence:
a(1) = 0,
a(2) = 13,
a(3) = 27,
a(4) = 2953,
a(5) = 24360,
a(6) = 972080,
a(7) = 13049563,
a(8) = 360783593,
a(9) = 6044482889,
a(10) = 142205412782,
a(11) = 2645920282312,
a(12) = 57787769198498,
a(13) = 1130122135817708,
a(14) = 23838761889677477,
a(15) = 477334902804794530,
a(16) = 9905649696435264827,
a(17) = 200572437515846530901,
a(18) = 4130348948437378850158,
a(19) = 84074883624291031055071,
a(20) = 1725061733607816846672084,
a(21) = 35201911945083165877105598,
a(22) = 721041937227213471236222936,
a(23) = 14731026760739434523775920272,
a(24) = 301492247130186410656766864436,
a(25) = 6162966556594442193757310209147,
a(26) = 126086101870795129720839096783333,
a(27) = 2578070083185284447937587182277129,
a(28) = 52734387801729163635906223494385644,
a(29) = 1078388240037660942562424414577181926,
a(30) = 22056541466571843558470704997624920958,
a(31) = 451070070689312442562501030339580527821,
a(32) = 9225477593066296020350369342487285559224,
a(33) = 188671988477305551144936342851950180268541,
a(34) = 3858726953408688228729004487413425843715888,
a(35) = 78916582053879579831149431468113368147807393,
a(36) = 1613990623415047770881237325964870382681263773,
a(37) = 33008659899083829723098251801948045543305771504,
a(38) = 675085532254115719882540973806685632932538969963,
a(39) = 13806606434855907791563611600265129790934630275875,
a(40) = 282368982002683765432041412891639191366286828541983,
a(41) = 5774916734695662624117282233886060904936699004411462,
a(42) = 118106924720040350256778966063911938302901243885821967,
a(43) = 2415485198293035324333076932461513145106982243926222725, and
a(n) = 10a(n-1) + 397a(n-2) - 2280a(n-3) - 41718a(n-4) + 171740a(n-5)
+ 1774768a(n-6) - 6621030a(n-7) - 36498440a(n-8) + 142302403a(n-9) + 378226103a(n-10)
- 1722824637a(n-11) - 1841136643a(n-12) + 11820333398a(n-13) + 2592291604a(n-14) - 47333298485a(n-15)
+ 11152811093a(n-16) + 115741226920a(n-17) - 56392421244a(n-18) - 180338596048a(n-19) + 113066783284a(n-20)
+ 185447332605a(n-21) - 129254123956a(n-22) - 129334594126a(n-23) + 92695904156a(n-24) + 62261558431a(n-25)
- 43387609685a(n-26) - 20799137282a(n-27) + 13474013361a(n-28) + 4776521864a(n-29) - 2787760272a(n-30)
- 734922053a(n-31) + 383508601a(n-32) + 72495666a(n-33) - 34918980a(n-34) - 4271202a(n-35)
+ 2078603a(n-36) + 129022a(n-37) - 77626a(n-38) - 773a(n-39) + 1644a(n-40)
- 54a(n-41) - 15a(n-42) + a(n-43).
a(n) = 14*a(n-1) + 331*a(n-2) - 3474*a(n-3) - 24357*a(n-4) + 237534*a(n-5) + 541266*a(n-6) - 6604103*a(n-7) - 1905497*a(n-8) + 85855152*a(n-9) - 60009003*a(n-10) - 545836271*a(n-11) + 672927757*a(n-12) + 1747850343*a(n-13) - 2763674623*a(n-14) - 2917536240*a(n-15) + 5513512152*a(n-16) + 2653029943*a(n-17) - 5852097578*a(n-18) - 1465977019*a(n-19) + 3471750395*a(n-20) + 568784352*a(n-21) - 1167520145*a(n-22) - 154667330*a(n-23) + 221656480*a(n-24) + 23823457*a(n-25) - 24542626*a(n-26) - 1818710*a(n-27) + 1646233*a(n-28) + 57030*a(n-29) - 66339*a(n-30) + 348*a(n-31) + 1479*a(n-32) - 61*a(n-33) - 14*a(n-34) + a(n-35) for n > 35. - Andrew Howroyd, Oct 04 2017
CROSSREFS
Sequence in context: A018946 A042397 A041336 * A157206 A138685 A047724
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Feb 03 2009
EXTENSIONS
Terms a(17) and beyond from Andrew Howroyd, Oct 04 2017
STATUS
approved