%I #8 Oct 04 2018 20:17:05
%S 1,1,1,1,2,2,1,3,2,6,1,4,24,4,24,1,5,12,24,12,120,1,3,360,16,144,48,
%T 720,1,42,20,45,48,144,240,5040,1,24,3360,1440,5760,144,2880,1440,
%U 40320,1,180,1260,90720,480,17280,80,8640,10080,362880,1,20,8400,4032,45360
%N Denominators of triangle T(n,k), n>=1, 0<=k<=n - 1, read by rows: T(n,k) is the coefficient of x^k in polynomial p_n for the n-th row sequence of A145153.
%p seq(seq(denom(T(n,k)), k=0..n-1), n=1..14);
%t row[n_] := Module[{f, eq}, f = Function[x, Sum[a[k]*x^k, {k, 0, n-1}]]; eq = Table[f[k+1] == SeriesCoefficient[x/(1-x-x^4)/(1-x)^k, {x, 0, n}], {k, 0, n-1}]; Table[a[k], {k, 0, n-1}] /. Solve[eq] // First]; Table[row[n] // Denominator, {n, 1, 14}] // Flatten (* _Jean-François Alcover_, Feb 04 2014, after _Alois P. Heinz_ *)
%Y See A145140 for more information on T(n, k). Diagonal gives: A000142.
%K frac,nonn,tabl
%O 1,5
%A _Alois P. Heinz_, Oct 03 2008