

A143696


Number of additive cyclic codes over GF(4) of length n that can be generated by one codeword.


1



4, 10, 24, 46, 72, 260, 400, 766, 1584, 2900, 4104, 19596, 16392, 67240, 139968, 196606, 266256, 1098760, 1048584, 3416604, 10454400, 10506260, 16810000, 83667116, 75497616, 167854100, 415239264, 1275614776, 1073741832, 6341140000, 6179217664, 12884901886
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


REFERENCES

W. C. Huffman, Additive cyclic codes over F_4, Advances in Math. Communication, 2 (2008), 309343.


LINKS

Table of n, a(n) for n=1..32.


FORMULA

See A143695 for formula.


PROG

(PARI) a(n) = {expz = 2^valuation(n, 2); y = n/expz; d = csiz(y, 2); prod(i=1, length(d), 1 + (2^(expz*d[i])1)*(2^d[i]+1)/(2^d[i]1)); } \\ see A143695 for csiz script, Michel Marcus, Mar 06 2013


CROSSREFS

Cf. A143695.
Sequence in context: A008251 A174934 A083168 * A058514 A182094 A001979
Adjacent sequences: A143693 A143694 A143695 * A143697 A143698 A143699


KEYWORD

nonn


AUTHOR

N. J. A. Sloane, Nov 13 2008, based on email from W. C. Huffman


EXTENSIONS

More terms from Michel Marcus, Mar 06 2013


STATUS

approved



