login
A143304
Decimal expansion of Norton's constant.
2
0, 6, 5, 3, 5, 1, 4, 2, 5, 9, 2, 3, 0, 3, 7, 3, 2, 1, 3, 7, 8, 7, 8, 2, 6, 2, 6, 7, 6, 3, 1, 0, 7, 9, 3, 0, 8, 1, 3, 0, 2, 4, 5, 3, 6, 8, 4, 9, 4, 2, 3, 7, 9, 7, 6, 5, 9, 0, 7, 1, 4, 4, 9, 6, 8, 1, 5, 7, 7, 0, 7, 5, 8, 0, 5, 4, 3, 1, 9, 9, 4, 9, 4, 6, 9, 4, 2, 0, 6, 8, 7, 1, 6, 3, 6, 4, 5, 5, 8, 9, 9, 7, 4, 2, 3
OFFSET
0,2
COMMENTS
The average number of divisions required by the Euclidean algorithm, for a pair of independently and uniformly chosen numbers in the range [1, N] is (12*log(2)/Pi^2) * log(N) + c + O(N^(e-1/6)), for any e>0, where c is this constant (Norton, 1990). - Amiram Eldar, Aug 27 2020
REFERENCES
Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, p. 157.
LINKS
Graham H. Norton, On the asymptotic analysis of the Euclidean algorithm, J. Symbolic Comput., Vol. 10 (1990), pp. 53-58.
Eric Weisstein's World of Mathematics, Norton's Constant.
FORMULA
Equals -((Pi^2 - 6*log(2)*(-3 + 2*EulerGamma + log(2) + 24*log(Glaisher) - 2*log(Pi)))/Pi^2).
Equals (12*log(2)/Pi^2) * (zeta'(2)/zeta(2) - 1/2) + A086237 - 1/2. - Amiram Eldar, Aug 27 2020
EXAMPLE
0.06535142592303732137...
MATHEMATICA
RealDigits[-((Pi^2 - 6*Log[2]*(24 * Log[Glaisher] + 2*EulerGamma + Log[2] - 2 * Log[Pi] - 3))/Pi^2), 10, 100][[1]] (* Amiram Eldar, Aug 27 2020 *)
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Eric W. Weisstein, Aug 05 2008
STATUS
approved