login
Triangle read by rows: T(n,k) = (4n-4k+1) * T(n-1,k-1) + (4k-3) * T(n-1,k).
26

%I #22 Mar 12 2020 03:01:52

%S 1,1,1,1,10,1,1,59,59,1,1,308,1062,308,1,1,1557,13562,13562,1557,1,1,

%T 7806,148527,352612,148527,7806,1,1,39055,1500669,7108915,7108915,

%U 1500669,39055,1,1,195304,14482396,123929944,241703110,123929944,14482396,195304,1

%N Triangle read by rows: T(n,k) = (4n-4k+1) * T(n-1,k-1) + (4k-3) * T(n-1,k).

%C Row sums are A001813.

%C This is the case m=4 of a group of triangles defined by the recursion T(n,k,m) = (m*n-m*k+1) *T(n-1,k-1) + (m*k-m+1)* T(n - 1, k).

%H Michael De Vlieger, <a href="/A142459/b142459.txt">Table of n, a(n) for n = 1..11325</a> (rows 1 <= n <= 150, flattened).

%H Nick Early, <a href="https://arxiv.org/abs/1810.03246">Honeycomb tessellations and canonical bases for permutohedral blades</a>, arXiv:1810.03246 [math.CO], 2018.

%H G. Strasser, <a href="http://dx.doi.org/10.1017/S0305004110000538">Generalisation of the Euler adic</a>, Math. Proc. Camb. Phil. Soc. 150 (2010) 241-256, Triangle A_4(n,k).

%F From _Peter Bala_, Feb 22 2011: (Start)

%F E.g.f: sqrt[u^2*(1-u)*exp(2*(u+1)*t)/(exp(4*u*t)-u*exp(4*t))] = Sum_{n >= 1} R(n,u)*t^n/n! = u + (u+u^2)*t + (u+10*u^2+u^3)*t^3/3! + ....

%F The row polynomials R(n,u) are related to the row polynomials P(n,u) of A186492 via R(n+1,u) = (-i)^n *(1-u)^n *P(n,i*(1+u)/(1-u)), where i = sqrt(-1). (End)

%e Triangle begins as:

%e 1;

%e 1, 1;

%e 1, 10, 1;

%e 1, 59, 59, 1;

%e 1, 308, 1062, 308, 1;

%e 1, 1557, 13562, 13562, 1557, 1;

%e 1, 7806, 148527, 352612, 148527, 7806, 1;

%e 1, 39055, 1500669, 7108915, 7108915, 1500669, 39055, 1;

%e 1, 195304, 14482396, 123929944, 241703110, 123929944, 14482396, 195304, 1;

%p A142459 := proc(n, k) if n = k then 1; elif k > n or k < 1 then 0 ; else (4*n-4*k+1)*procname(n-1, k-1)+(4*k-3)*procname(n-1, k) ; end if; end proc:

%p seq(seq(A142459(n, k), k=1..n), n=1..10) ; # _R. J. Mathar_, May 11 2012

%t T[n_, 1]:= 1; T[n_, n_]:= 1; T[n_, k_]:= (4*n -4*k +1)*T[n-1, k-1] + (4*k - 3)*T[n-1, k]; Table[T[n, k], {n, 10}, {k, n}]//Flatten

%o (Sage)

%o @CachedFunction

%o def T(n, k):

%o if (k==1 or k==n): return 1

%o else: return (4*k-3)* T(n-1, k) + (4*(n-k)+1)*T(n-1, k-1)

%o [[T(n, k) for k in (1..n)] for n in (1..10)] # _G. C. Greubel_, Mar 12 2020

%Y Cf. A001813, A186492.

%K nonn,tabl,easy

%O 1,5

%A _Roger L. Bagula_, Sep 19 2008

%E Edited by the Assoc. Eds. of the OEIS, Mar 25 2010

%E Edited by _N. J. A. Sloane_, May 11 2013