login
Irregular table: Row n (of A001221(n) terms, for n>=2) consists of the largest powers that divides n of each distinct prime that divides n. Terms are arranged by the size of the distinct primes. Row 1 = (1).
22

%I #38 Aug 21 2022 11:37:39

%S 1,2,3,4,5,2,3,7,8,9,2,5,11,4,3,13,2,7,3,5,16,17,2,9,19,4,5,3,7,2,11,

%T 23,8,3,25,2,13,27,4,7,29,2,3,5,31,32,3,11,2,17,5,7,4,9,37,2,19,3,13,

%U 8,5,41,2,3,7,43,4,11,9,5,2,23,47,16,3,49,2,25,3,17,4,13,53,2,27,5,11,8,7,3

%N Irregular table: Row n (of A001221(n) terms, for n>=2) consists of the largest powers that divides n of each distinct prime that divides n. Terms are arranged by the size of the distinct primes. Row 1 = (1).

%C In other words, except for row 1, row n contains the unitary prime power divisors of n, sorted by the prime. - _Franklin T. Adams-Watters_, May 05 2011

%C A034684(n) = smallest term of n-th row; A028233(n) = T(n,1); A053585(n) = T(n,A001221(n)); A008475(n) = sum of n-th row for n > 1. - _Reinhard Zumkeller_, Jan 29 2013

%H Reinhard Zumkeller, <a href="/A141809/b141809.txt">Rows n=1..10000 of triangle, flattened</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/PrimeFactorization.html">Prime Factorization</a>

%F T(n,k) = A027748(n,k)^A124010(n,k) for n > 1, k = 1..A001221(n). - _Reinhard Zumkeller_, Mar 15 2012

%e 60 has the prime factorization 2^2 * 3^1 * 5^1, so row 60 is (4,3,5).

%e From _M. F. Hasler_, Oct 12 2018: (Start)

%e The table starts:

%e n : largest prime powers dividing n

%e 1 : 1

%e 2 : 2

%e 3 : 3

%e 4 : 4

%e 5 : 5

%e 6 : 2, 3

%e 7 : 7

%e 8 : 8

%e 9 : 9

%e 10 : 2, 5

%e 11 : 11

%e 12 : 4, 3

%e etc. (End)

%t f[{x_, y_}] := x^y; Table[Map[f, FactorInteger[n]], {n, 1, 50}] // Grid (* _Geoffrey Critzer_, Apr 03 2015 *)

%o (Haskell)

%o a141809 n k = a141809_row n !! (k-1)

%o a141809_row 1 = [1]

%o a141809_row n = zipWith (^) (a027748_row n) (a124010_row n)

%o a141809_tabf = map a141809_row [1..]

%o -- _Reinhard Zumkeller_, Mar 18 2012

%o (PARI) A141809_row(n)=if(n>1, [f[1]^f[2]|f<-factor(n)~], [1]) \\ _M. F. Hasler_, Oct 12 2018, updated Aug 19 2022

%Y A027748, A124010 are used in a formula defining this sequence.

%Y Cf. A001221 (row lengths), A008475 (row sums), A028233 (column 1), A034684 (row minima), A053585 (right edge).

%Y Cf. A060175, A141810, A213925.

%K nonn,tabf

%O 1,2

%A _Leroy Quet_, Jul 07 2008