login
a(1) = 0, a(2) = a(3) = 1; a(n) = a(n-1)*a(n-2) + a(n-2)*a(n-3) for n > 3.
1

%I #15 Oct 04 2020 16:16:44

%S 0,1,1,1,2,3,8,30,264,8160,2162160,17645379840,38152152118080000,

%T 673209215875134265982054400,

%U 25684380411361480419900838705211915059200000

%N a(1) = 0, a(2) = a(3) = 1; a(n) = a(n-1)*a(n-2) + a(n-2)*a(n-3) for n > 3.

%D Martin Gardner, Mathematical Circus, Random House, New York, 1981, p. 165.

%H Michael De Vlieger, <a href="/A141520/b141520.txt">Table of n, a(n) for n = 1..21</a>

%t t={0,1,1};Do[AppendTo[t,t[[-3]]*t[[-2]]+t[[-2]]*t[[-1]]],{n,13}];t (* _Vladimir Joseph Stephan Orlovsky_, Feb 03 2012 *)

%t Nest[Append[#, #[[-1]] #[[-2]] + #[[-2]] #[[-3]]] &, {0, 1, 1}, 12] (* _Michael De Vlieger_, Dec 17 2017 *)

%t RecurrenceTable[{a[1]==0,a[2]==a[3]==1,a[n]==a[n-1]a[n-2]+a[n-2]a[n-3]},a,{n,15}] (* _Harvey P. Dale_, Oct 04 2020 *)

%o (MATLAB)

%o function y=fib(n)

%o %Generates running geometric numbers

%o fz(1)=0;fz(2)=1;fz(3)=1;

%o for k=4:n

%o fz(k)=fz(k-2)*(fz(k-1)+fz(k-3));

%o end

%o y=fz(n);

%K nonn

%O 1,5

%A Matt Wynne (matwyn(AT)verizon.net), Aug 11 2008