login
A138583
Triangle read by rows, T[n,2i-1]=2T[n-1,i],T[n,2i]=2k-1-2T[n-1,i].
0
1, 2, 91, 4, 89, 182, -89, 8, 85, 178, -85, 364, -271, -178, 271, 16, 77, 170, -77, 356, -263, -170, 263, 728, -635, -542, 635, -356, 449, 542, -449, 32, 61, 154, -61, 340, -247, -154, 247, 712, -619, -526, 619, -340, 433, 526, -433, 1456, -1363, -1270, 1363, -1084, 1177, 1270, -1177, -712, 805, 898, -805, 1084
OFFSET
1,2
COMMENTS
This is a "backward" generalized go sequence defined by Yasutoshi Kohmoto.
EXAMPLE
Triangle starts:
1
2,91
4,89,182,-89
8,85,178,-85,364,-271,-178,271
16,77,170,-77,356,-263,-170,263,728,-635,-542,635,-356,449,542,-449
32,61,154,-61,340,-247,-154,247,712,-619,-526,619,-340,433,526,-433,1456,-1363,-1270,1363,-1084,1177,1270,-1177,-712,805,898,-805,1084,-991,-898,991
Each term, a, produces 2 new terms by rule {2a,2(k-a)-1}, k=47. Length of each n-th row = 2^(n-1).
First term of n-th row = 2^n
2n term of n-th row = (2k-1)-2^(n-1)=93-2^(n-1) = 91,89,85,77,61,29.
Last term of n-th row = (1/3)(2k-1+(k-2) (-2)^n)=31+15(-2)^n = 1,91,-89, 271,-449,991.
MATHEMATICA
s={1}; Do[Print[s]; s={2#, 2(k-#)-1}&/@s//Flatten, {6}]
CROSSREFS
Sequence in context: A342329 A306760 A306964 * A193747 A242176 A024240
KEYWORD
tabf,sign
AUTHOR
Zak Seidov, May 13 2008
STATUS
approved