%I #19 Oct 25 2021 04:19:11
%S 1,2,1,3,2,1,4,1,2,1,5,2,3,2,1,6,2,2,3,2,1,7,3,3,4,3,2,1,8,1,4,2,4,3,
%T 2,1,9,2,1,3,5,4,3,2,1,10,2,2,4,2,5,4,3,2,1,11,3,3,5,3,6,5,4,3,2,1,12,
%U 2,2,3,4,2,6,5,4,3,2,1,13,3,3,4,5,3,7,6,5,4,3,2,1,14,3,4,5,6,4,2,7,6,5,4,3,2,1
%N Triangle read by rows: T(n,k) = sum of digits of n in base k representation, 1<=k<=n.
%C A131383(n) = sum of n-th row;
%C A000027(n) = T(n,1);
%C A000120(n) = T(n,2) for n>1;
%C A053735(n) = T(n,3) for n>2;
%C A053737(n) = T(n,4) for n>3;
%C A053824(n) = T(n,5) for n>4;
%C A053827(n) = T(n,6) for n>5;
%C A053828(n) = T(n,7) for n>6;
%C A053829(n) = T(n,8) for n>7;
%C A053830(n) = T(n,9) for n>8;
%C A007953(n) = T(n,10) for n>9;
%C A053831(n) = T(n,11) for n>10;
%C A053832(n) = T(n,12) for n>11;
%C A053833(n) = T(n,13) for n>12;
%C A053834(n) = T(n,14) for n>13;
%C A053835(n) = T(n,15) for n>14;
%C A053836(n) = T(n,16) for n>15;
%C A007395(n) = T(n,n-1) for n>1;
%C A000012(n) = T(n,n).
%H Alois P. Heinz, <a href="/A138530/b138530.txt">Rows n = 1..141, flattened</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/DigitSum.html">Digit Sum</a>
%e Start of the triangle for n in base k representation:
%e ......................1
%e ....................11....10
%e ......... ........111....11...10
%e ................1111...100...11..10
%e ..............11111...101...12..11..10
%e ............111111...110...20..12..11..10
%e ..........1111111...111...21..13..12..11..10
%e ........11111111..1000...22..20..13..12..11..10
%e ......111111111..1001..100..21..14..13..12..11..10
%e ....1111111111..1010..101..22..20..14..13..12..11..10
%e ..11111111111..1011..102..23..21..15..14..13..12..11..10
%e 111111111111..1100..110..30..22..20..15..14..13..12..11..10,
%e and the triangle of sums of digits starts:
%e ......................1
%e .....................2...1
%e ......... ..........3...2...1
%e ...................4...1...2...1
%e ..................5...2...3...2...1
%e .................6...2...2...3...2...1
%e ................7...3...3...4...3...2...1
%e ...............8...1...4...2...4...3...2...1
%e ..............9...2...1...3...5...4...3...2...1
%e ............10...2...2...4...2...5...4...3...2...1
%e ...........11...3...3...5...3...6...5...4...3...2...1
%e ..........12...2...2...3...4...2...6...5...4...3...2...1.
%t T[n_, k_] := If[k == 1, n, Total[IntegerDigits[n, k]]];
%t Table[T[n, k], {n, 1, 14}, {k, 1, n}] // Flatten (* _Jean-François Alcover_, Oct 25 2021 *)
%o (Haskell)
%o a138530 n k = a138530_tabl !! (n-1) !! (k-1)
%o a138530_row n = a138530_tabl !! (n-1)
%o a138530_tabl = zipWith (map . flip q) [1..] a002260_tabl where
%o q 1 n = n
%o q b n = if n < b then n else q b n' + d where (n', d) = divMod n b
%o -- _Reinhard Zumkeller_, Apr 29 2015
%Y Cf. A007953. See A240236 for another version.
%Y Cf. A002260.
%K nonn,base,tabl
%O 1,2
%A _Reinhard Zumkeller_, Mar 26 2008