login
A137874
Prime numbers, isolated from neighboring primes by >14.
3
2179, 2503, 3137, 3433, 3967, 4177, 4621, 5623, 6637, 7369, 7393, 7433, 7993, 9257, 11027, 11197, 11213, 11657, 13649, 14107, 14369, 15859, 16033, 16301, 16787, 16963, 17077, 17257, 17807, 18013, 18617, 18637, 18839, 19121, 19661, 20201
OFFSET
1,1
COMMENTS
The definition means that p+-2, p+-4, p+-6, p+-8, p+-10, p+-12 and p+-14 are all composite. - N. J. A. Sloane, Jun 04 2008
LINKS
MATHEMATICA
q=14; s=""; For[i=1, i<12^2, p=Prime[i]; a=0; For[j=2, j<=q, If[PrimeQ[p-j]||PrimeQ[p+j], a=1; Break[]]; j=j+2]; If[a==0, s=s<>ToString[p]<>", "]; i++ ]; Print[s]
Prime[Select[Range[2, 3000], Prime[ #-1]+14<Prime[ # ]<Prime[ #+1]-14&]] (* Ray Chandler, May 02 2009 *)
Select[Partition[Prime[Range[2500]], 3, 1], Min[Differences[#]]>14&][[All, 2]] (* Harvey P. Dale, Apr 22 2022 *)
CROSSREFS
Sequence in context: A035770 A107566 A073142 * A137875 A020425 A253519
KEYWORD
nonn
AUTHOR
EXTENSIONS
Extended by Ray Chandler, May 02 2009
STATUS
approved