login
A137827
Prime powers (A246655) congruent to 1 (mod 3).
7
4, 7, 13, 16, 19, 25, 31, 37, 43, 49, 61, 64, 67, 73, 79, 97, 103, 109, 121, 127, 139, 151, 157, 163, 169, 181, 193, 199, 211, 223, 229, 241, 256, 271, 277, 283, 289, 307, 313, 331, 337, 343, 349, 361, 367, 373, 379, 397, 409, 421, 433, 439, 457, 463, 487, 499
OFFSET
1,1
COMMENTS
Numbers k not being powers of 3 such that x^2 + x + 1 (or x^2 - x + 1) is reducible over GF(k). - Jianing Song, Sep 24 2019
LINKS
Eric Weisstein's World of Mathematics, Cyclotomic Graph
MATHEMATICA
Select[ Range[4, 500], (Mod[#, 3] == 1 && Mod[#, # - EulerPhi[#]] == 0)& ] (* Jean-François Alcover, Oct 26 2012 *)
PROG
(PARI) isok(n) = isprimepower(n) && ((n % 3) == 1); \\ Michel Marcus, Sep 24 2019
CROSSREFS
Row 3 of A354940 (conjectured).
Intersection of A016777 and A246655.
Cf. A354982 (characteristic function), A354984 (terms * 3).
Cf. also A327752, A327753.
Sequence in context: A084089 A202822 A374135 * A045090 A213382 A258867
KEYWORD
nonn,easy
AUTHOR
Eric W. Weisstein, Feb 12 2008
STATUS
approved