login
A137476
Prime numbers p such that p^3 - (p+1)^2 and p^3 + (p+1)^2 are both primes.
0
3, 167, 1373, 1553, 1847, 1949, 2897, 3359, 3389, 8669, 9209, 10709, 12743, 13187, 13457, 14657, 15137, 15809, 17609, 17909, 19889, 20369, 21419, 21773, 22229, 23957, 24473, 24527, 28619, 29339, 30137, 30713, 30773, 34607, 35363, 36779
OFFSET
1,1
EXAMPLE
3^3 +- 4^2 -> (11, 43) (both primes);
167^3 +- 168^2 = 4657463 +- 28224 -> (4629239, 4685687) (both primes).
MATHEMATICA
Select[Prime[Range[900]], PrimeQ[ #^3-(#+1)^2]&&PrimeQ[ #^3+(#+1)^2]&]
PROG
(Magma) [n: n in [0..500] | IsPrime(n) and IsPrime(n^3-(n+1)^2)and IsPrime(n^3 +(n+1)^2)] // Vincenzo Librandi, Nov 24 2010
CROSSREFS
Sequence in context: A100908 A180449 A142200 * A292920 A203482 A116506
KEYWORD
nonn
AUTHOR
EXTENSIONS
More terms from Vincenzo Librandi, Mar 26 2010
STATUS
approved