login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A137320 Coefficients of raising factorial polynomials, T(n,k) = [x^k] p(x, n) where p(x, n) = (m*x + n - 1)*p(x, n - 1) with p[x, 0] = 1, p[x, -1] = 0, p[x, 1] = m*x and m = 2. Triangle read by rows, for n >= 0 and 0 <= k <= n. 1
1, 0, 2, 0, 2, 4, 0, 4, 12, 8, 0, 12, 44, 48, 16, 0, 48, 200, 280, 160, 32, 0, 240, 1096, 1800, 1360, 480, 64, 0, 1440, 7056, 12992, 11760, 5600, 1344, 128, 0, 10080, 52272, 105056, 108304, 62720, 20608, 3584, 256, 0, 80640, 438336, 944992, 1076544, 718368, 290304, 69888, 9216, 512 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Row sums are factorials.

Also the Bell transform of A052849 (with a(0)=2). For the definition of the Bell transform see A264428. - Peter Luschny, Jan 27 2016

REFERENCES

Steve Roman, The Umbral Calculus, Dover Publications, New York (1984), pp. 62-63

LINKS

Table of n, a(n) for n=0..54.

FORMULA

From Peter Luschny, Feb 26 2019: (Start)

p(n, x) = n!*Sum_{k=0..n} (-1)^n*binomial(-x, k)*binomial(-x, n-k).

p(n, x) = (n + 2*x - 1)!/(2*x - 1)!.

T(n, k) = [x^k] p(n,x). (End)

EXAMPLE

[0] {1},

[1] {0, 2},

[2] {0, 2,     4},

[3] {0, 4,     12,     8},

[4] {0, 12,    44,     48,     16},

[5] {0, 48,    200,    280,    160,     32},

[6] {0, 240,   1096,   1800,   1360,    480,    64},

[7] {0, 1440,  7056,   12992,  11760,   5600,   1344,   128},

[8] {0, 10080, 52272,  105056, 108304,  62720,  20608,  3584,  256},

[9] {0, 80640, 438336, 944992, 1076544, 718368, 290304, 69888, 9216, 512}.

MAPLE

# The function BellMatrix is defined in A264428.

BellMatrix(n -> `if`(n<2, 2, 2*n!), 8); # Peter Luschny, Jan 27 2016

p := (n, x) -> (n + 2*x - 1)!/(2*x - 1)!:

seq(seq(coeff(expand(p(n, x)), x, k), k=0..n), n=0..9); # Peter Luschny, Feb 26 2019

MATHEMATICA

m = 2; p[x, 0] = 1; p[x, -1] = 0; p[x, 1] = m*x;

p[x_, n_] := p[x, n] = (m*x + n - 1)*p[x, n - 1];

Table[CoefficientList[p[x, n], x], {n, 0, 9}] // Flatten

(* Second program: *)

BellMatrix[f_, len_] := With[{t = Array[f, len, 0]}, Table[BellY[n, k, t], {n, 0, len - 1}, {k, 0, len - 1}]];

B = BellMatrix[Function[n, If[n < 2, 2, 2*n!]], rows = 12];

Table[B[[n, k]], {n, 1, rows}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jun 28 2018, after Peter Luschny *)

CROSSREFS

Apart from signs, same as A137312.

Sequence in context: A126440 A131186 A137312 * A263399 A143507 A071961

Adjacent sequences:  A137317 A137318 A137319 * A137321 A137322 A137323

KEYWORD

nonn,tabl

AUTHOR

Roger L. Bagula, Apr 20 2008

EXTENSIONS

Edited and offset set to 0 by Peter Luschny, Feb 26 2019

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 7 15:56 EDT 2020. Contains 333306 sequences. (Running on oeis4.)