login
Triangle T(n,0)=0 and T(n,k) = -A028421(n-1,k-1), 0<k<=n.
0

%I #5 Mar 30 2012 17:34:22

%S 0,0,-1,0,-1,-2,0,-2,-6,-3,0,-6,-22,-18,-4,0,-24,-100,-105,-40,-5,0,

%T -120,-548,-675,-340,-75,-6,0,-720,-3528,-4872,-2940,-875,-126,-7,0,

%U -5040,-26136,-39396,-27076,-9800,-1932,-196,-8,0,-40320,-219168,-354372,-269136,-112245,-27216,-3822,-288,-9,0,-362880

%N Triangle T(n,0)=0 and T(n,k) = -A028421(n-1,k-1), 0<k<=n.

%C Row sums are -A000254(n).

%H J. Sondow, Eric W. Weisstein, <a href="http://mathworld.wolfram.com/HarmonicNumber.html">Harmonic Number</a>, MathWorld

%e 0;

%e 0, -1;

%e 0, -1, -2;

%e 0, -2, -6, -3;

%e 0, -6, -22, -18, -4;

%e 0, -24, -100, -105, -40, -5;

%e 0, -120, -548, -675, -340, -75, -6;

%e 0, -720, -3528, -4872, -2940, -875, -126, -7;

%e 0, -5040, -26136, -39396, -27076, -9800, -1932, -196, -8;

%e 0, -40320, -219168, -354372, -269136, -112245, -27216, -3822, -288, -9;

%e 0, -362880, -2053152, -3518100, -2894720, -1346625, -379638, -66150, -6960,-405, -10;

%t Clear[p, g] p[t_] = x*Log[1 - t]/(1 - t)^x; g = Table[ ExpandAll[n!SeriesCoefficient[ Series[p[t], {t, 0, 30}], n]], {n, 0, 10}]; a = Table[n!* CoefficientList[Simplify[SeriesCoefficient[ Series[p[t], {t, 0, 30}], n]], x], {n, 0, 10}]; Flatten[a]

%K tabl,sign

%O 1,6

%A _Roger L. Bagula_, Apr 13 2008