OFFSET
1,2
COMMENTS
Rows satisfy this recurrence: T(n,k) = T(n,k-1) + T(n,k-3) for all k>=4.
Except for initial terms, (row 1) = A000930 (column 1) = A020942 (column 2) = A064105 (column 3) = A064106.
As a sequence, the array is a permutation of the natural numbers.
As an array, T is an interspersion (hence also a dispersion).
LINKS
C. Kimberling, The Zeckendorf array equals the Wythoff array, Fibonacci Quarterly 33 (1995) 3-8.
FORMULA
Row 1 is the 3rd-order Zeckendorf basis, given by initial terms b(1)=1, b(2)=2, b(3)=3 and recurrence b(k) = b(k-1) + b(k-3) for k>=4. Every positive integer has a unique 3-Zeckendorf representation: n = b(i(1)) + b(i(2)) + ... + b(i(p)), where |i(h)-i(j))>=3. Rows of T are defined inductively: T(n,1) is the least positive integer not in an earlier row. T(n,2) is obtained from T(n,1) as follows: if T(n,1) = b(i(1)) + b(i(2)) + ... + b(i(p)), then T(n,k+1) = b(i(1+k)) + b(i(2+k)) + ... + b(i(p+k)) for k=1,2,3,... .
EXAMPLE
Northwest corner:
1 2 3 4 6 9 13 19 ...
5 8 12 17 25 37 54 79 ...
7 11 16 23 34 50 73 107 ...
10 15 22 32 47 69 101 148 ...
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Dec 20 2007
STATUS
approved