login
A135576
Numbers whose binary expansion has only the digit "1" as first, central and final digit.
8
1, 7, 21, 73, 273, 1057, 4161, 16513, 65793, 262657, 1049601, 4196353, 16781313, 67117057, 268451841, 1073774593, 4295032833, 17180000257, 68719738881, 274878431233, 1099512676353, 4398048608257, 17592190238721
OFFSET
1,2
COMMENTS
This sequence is essentially identical to A001576.
a(n) is the number whose binary representation is A135577(n), (See example). - Omar E. Pol, Nov 18 2008
FORMULA
a(1)=1. If n>1 then a(n) = A001576(n-1).
G.f.: -x*(16*x^3-14*x^2+1) / ((x-1)*(2*x-1)*(4*x-1)). - Colin Barker, Sep 16 2013
EXAMPLE
--------------------------------------
n ........ a(n) ..... a(n) in base 2
--------------------------------------
1 .......... 1 ............ 1
2 .......... 7 ........... 111
3 ......... 21 .......... 10101
4 ......... 73 ......... 1001001
5 ........ 273 ........ 100010001
6 ....... 1057 ....... 10000100001
7 ....... 4161 ...... 1000001000001
8 ...... 16513 ..... 100000010000001
9 ...... 65793 .... 10000000100000001
10 .... 262657 ... 1000000001000000001
MATHEMATICA
nxt[n_]:=Module[{l=Floor[IntegerLength[n, 2]/2]}, FromDigits[Join[{1}, Table[0, {l}], {1}, Table[0, {l}], {1}], 2]]
NestList[nxt, 1, 25] (* Harvey P. Dale, Dec 29 2010 *)
Join[{1}, LinearRecurrence[{7, -14, 8}, {7, 21, 73}, 30]] (* Harvey P. Dale, Mar 22 2015 *)
PROG
(PARI) a(n)=if(n--, 4^n+2^n+1, 1) \\ Charles R Greathouse IV, Dec 28 2012
CROSSREFS
Subsequence of A006995.
Sequence in context: A215494 A146533 A208534 * A153497 A146247 A241431
KEYWORD
nonn,base,easy
AUTHOR
Omar E. Pol, Feb 24 2008
STATUS
approved