login
a(0) = 1; a(n) = [product_(i = 1..n) prime(i)^i] - 1, where prime(i) is i-th prime.
1

%I #15 Oct 16 2016 02:25:53

%S 1,1,17,2249,5402249,870037764749,4199506113235182749,

%T 1723219765760312626547490749,29266411525287522788837599332989370749,

%U 52713275010243038997421106186697438702252144407249,22176856087751973465466098269669474342964368337745368642450857249

%N a(0) = 1; a(n) = [product_(i = 1..n) prime(i)^i] - 1, where prime(i) is i-th prime.

%H Gheorghe Coserea, <a href="/A135505/b135505.txt">Table of n, a(n) for n = 0..50</a>

%H C. K. Caldwell and Y. Gallot, <a href="https://doi.org/10.1090/S0025-5718-01-01315-1">On the primality of n!-1 and 2*3*..*p -1</a>, Math. Comp., Volume 71, Number 237, Pages 441-448.

%H Leo Corry, <a href="http://www.tau.ac.il/~corry/publications/articles/pdf/Computers%20and%20FLT.pdf">Number crunching vs. number theory: computers and FLT, from Kummer to SWAC (1850-1960) and beyond</a>, Archive for History of Exact Sciences, Vol. 62, No. 4 (July 2008), pp. 393-455.

%H Roland Queme, <a href="http://arxiv.org/abs/math/0601136">Some applications of Kummer and Stickelberger relations</a>, arXiv:math/0601136 [math.NT], 2006.

%F a(n) = A076954(n)-1, n>0. - _R. J. Mathar_, Nov 01 2009

%o (PARI)

%o a(n) = { if (n <= 0, return(1)); prod(i = 1, n, prime(i)^i) - 1;}

%o vector(11, i, a(i-1)) \\ _Gheorghe Coserea_, Aug 24 2015

%Y Cf. A057588, A002110, A057705.

%K easy,nonn

%O 0,3

%A _Ctibor O. Zizka_, Feb 19 2008

%E Converted references to links - _R. J. Mathar_, Oct 30 2009