OFFSET
0,2
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
Elena Barcucci, Antonio Bernini, Stefano Bilotta, Renzo Pinzani, Non-overlapping matrices, arXiv:1601.07723 [cs.DM], 2016. See column 2 of Table 2 p. 11.
Elena Barcucci, Antonio Bernini, Stefano Bilotta and Renzo Pinzani, Non-overlapping matrices, Theoretical Computer Science, Vol. 658, Part A (2017), 36-45.
B. Chaffin, J. P. Linderman, N. J. A. Sloane and Allan Wilks, On Curling Numbers of Integer Sequences, arXiv:1212.6102 [math.CO], 2012-2013.
B. Chaffin, J. P. Linderman, N. J. A. Sloane and Allan Wilks, On Curling Numbers of Integer Sequences, Journal of Integer Sequences, Vol. 16 (2013), Article 13.4.3.
Emrah Kılıç, Talha Arıkan, Evaluation of Hessenberg determinants with recursive entries: generating function approach, Filomat (2017) Vol. 31, Issue 15, pp. 4945-4962.
A. V. Zharkova, Inaccesible States in Dynamic Systems Associated with Paths and Cycles, Izv. Saratov Univ. (N.S.), Ser. Math. Mech. Inform., 11 (2011), 116-122.
Index entries for linear recurrences with constant coefficients, signature (1, 1, 1).
FORMULA
a(n) = 2*A000073(n+2) for n > 0.
a(n) = a(n-1) + a(n-2) + a(n-3) for n > 3.
G.f.: -(x+1)*(x^2+1)/(x^3+x^2+x-1).
a(n) = nearest integer to b*c^n, where b = 1.2368... and c = 1.839286755... is the real root of x^3-x^2-x-1 = 0. See A058265. - N. J. A. Sloane, Jan 06 2010
G.f.: (1-x^4)/(1-2*x+x^4) and generally to "not get a run of k" (1-x^k)/(1-2*x+x^k). - Geoffrey Critzer, Feb 01 2012
G.f.: Q(0)/x^2 - 2/x- 1/x^2, where Q(k) = 1 + (1+x)*x^2 + (2*k+3)*x - x*(2*k+1 +x+x^2)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, Oct 04 2013
MATHEMATICA
LinearRecurrence[{1, 1, 1}, {1, 2, 4, 8}, 36] (* Vladimir Joseph Stephan Orlovsky, Jul 23 2011; first term 1 added by Georg Fischer, Apr 02 2019 *)
PROG
(PARI) Vec(1-2*x*(1+x+x^2)/(-1+x+x^2+x^3) + O(x^100)) \\ Altug Alkan, Dec 10 2015
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
James R FitzSimons (cherry(AT)getnet.net), Feb 07 2008
EXTENSIONS
More terms from Robert G. Wilson v, Feb 10 2008
a(0)=1 prepended by Alois P. Heinz, Dec 10 2015
STATUS
approved