

A135430


Numbers n for which Ramanujan's function tau(n)=A000594(n) is an odd prime.


2



63001, 458329, 942841, 966289, 1510441, 2961841, 4879681, 14280841, 29019769, 46117681, 49182169, 51652969, 56957209, 75047569, 80120401, 86136961, 93644329, 97752769, 104509729, 162384049, 164378041, 177235969, 193571569
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Here, negative integers whose absolute value is prime are considered prime.
a(1) = 63001 was found by Lehmer in 1965. It is known that tau(n) is odd if and only if n is an odd square. Indeed, a(1)=251^2, a(2)=677^2, ..., a(7)=47^4. The first sixth power in the sequence is 1151^6.
From Olivier Rozier, Feb 03 2016 (Start)
a(n) = p^(q1) for p,q odd primes, and p not included in A007659, so that a(n) is a subsequence of A036454. Consequence of the arithmetical properties: (i) tau function is multiplicative, (ii) for p prime, tau(p^(k1)) is the kth term of a Lucas sequence.
It is conjectured that the equation tau(n)=2 has no solution. (End)


LINKS

Dana Jacobsen, Table of n, a(n) for n = 1..1000
D. H. Lehmer, The Primality of Ramanujan's TauFunction, The American Mathematical Monthly, Vol. 72, No. 2, Part 2 (Feb., 1965), pp. 1518.
N. Lygeros and O. Rozier, Odd prime values of the Ramanujan tau function, Ramanujan Journal, Vol. 32 (2013), pp. 269280.
Eric Weisstein's World of Mathematics, Tau Function Prime


EXAMPLE

tau(63001) = 80561663527802406257321747 which is prime.


MATHEMATICA

Select[Range[1, 7000, 2]^2, PrimeQ@RamanujanTau@# &]


PROG

(PARI 2.8) for(x=1, 1000, n=(2*x+1)^2; if(isprime(abs(ramanujantau(n))), print1(n", "))) \\ Dana Jacobsen, Sep 07 2015
(Perl) use ntheory ":all"; for (0..1000) { my $n = (2*$_+1)**2; say $n if is_prime(abs(ramanujan_tau($n))); } # Dana Jacobsen, Sep 07 2015


CROSSREFS

Cf. A000594 (Ramanujans's tau function tau(n)).
Cf. A265913 (tau(a(n)).
Sequence in context: A224649 A253854 A237675 * A049025 A322679 A322689
Adjacent sequences: A135427 A135428 A135429 * A135431 A135432 A135433


KEYWORD

nonn


AUTHOR

Giovanni Resta, Dec 12 2007


STATUS

approved



