%I #44 Nov 20 2021 10:52:22
%S 1,0,1,0,1,3,0,1,12,13,0,1,61,106,75,0,1,310,1105,1035,541,0,1,1821,
%T 12075,16025,11301,4683,0,1,11592,141533,267715,239379,137774,47293,0,
%U 1,80963,1812216,4798983,5287506,3794378,1863044,545835,0,1,608832,25188019,92374107,124878033,105494886,64432638,27733869,7087261
%N Triangle of numbers T(n,k) (n>=0, n>=k>=0) of transitive reflexive early confluent binary relations R on n labeled elements where k=max_{x}(|{y : xRy}|), read by rows.
%C R is early confluent iff (xRy and xRz) implies (yRz or zRy) for all x, y, z.
%C Conjecture: For fixed k>=0, A135313(n+k,n) ~ n! * n^(2*k) / (2^(k+1) * k! * log(2)^(n+k+1)). - _Vaclav Kotesovec_, Nov 20 2021
%D A. P. Heinz (1990). Analyse der Grenzen und Möglichkeiten schneller Tableauoptimierung. PhD Thesis, Albert-Ludwigs-Universität Freiburg, Freiburg i. Br., Germany.
%H Alois P. Heinz, <a href="/A135313/b135313.txt">Rows n = 0..140, flattened</a>
%F T(n,0) = A135302(n,0), T(n,k) = A135302(n,k) - A135302(n,k-1) for k>0.
%F E.g.f. of column k=0: tt_0(x) = 1, e.g.f. of column k>0: tt_k(x) = t_k(x) -t_{k-1}(x), where t_k(x) = exp (Sum_{m=1..k} x^m/m! * t_{k-m}(x)) if k>=0 and t_k(x) = 0 else.
%e T(3,3) = 13 because there are 13 relations of the given kind for 3 elements: (1) 1R2, 2R1, 1R3, 3R1, 2R3, 3R2; (2) 1R2, 1R3, 2R3, 3R2; (3) 2R1, 2R3, 1R3, 3R1; (4) 3R1, 3R2, 1R2, 2R1; (5) 2R1, 3R1, 2R3, 3R2; (6) 1R2, 3R2, 1R3, 3R1; (7) 1R3, 2R3, 1R2, 2R1; (8) 1R2, 2R3, 1R3; (9) 1R3, 3R2, 1R2; (10) 2R1, 1R3, 2R3; (11) 2R3, 3R1, 2R1; (12) 3R1, 1R2, 3R2; (13) 3R2, 2R1, 3R1; (the reflexive relationships 1R1, 2R2, 3R3 have been omitted for brevity).
%e Triangle T(n,k) begins:
%e 1;
%e 0, 1;
%e 0, 1, 3;
%e 0, 1, 12, 13;
%e 0, 1, 61, 106, 75;
%e 0, 1, 310, 1105, 1035, 541;
%e 0, 1, 1821, 12075, 16025, 11301, 4683;
%e ...
%p t:= proc(k) option remember; `if`(k<0, 0,
%p unapply(exp(add(x^m/m!*t(k-m)(x), m=1..k)), x))
%p end:
%p tt:= proc(k) option remember;
%p unapply((t(k)-t(k-1))(x), x)
%p end:
%p T:= proc(n, k) option remember;
%p coeff(series(tt(k)(x), x, n+1), x, n)*n!
%p end:
%p seq(seq(T(n, k), k=0..n), n=0..12);
%t f[0, _] = 1; f[k_, x_] := f[k, x] = Exp[Sum[x^m/m!*f[k - m, x], {m, 1, k}]]; (* a = A135302 *) a[0, 0] = 1; a[_, 0] = 0; a[n_, k_] := SeriesCoefficient[f[k, x], {x, 0, n}]*n!; t[n_, 0] := a[n, 0]; t[n_, k_] := a[n, k] - a[n, k-1]; Table[t[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* _Jean-François Alcover_, Dec 06 2013, after A135302 *)
%Y Columns k=0-10 give: A000007, A057427, A218092, A218093, A218094, A218095, A218096, A218097, A218098, A218099, A218091.
%Y Main diagonal and lower diagonals give: A000670, A218111, A218112, A218103, A218104, A218105, A218106, A218107, A218108, A218109, A218110.
%Y Row sums are in A052880.
%Y T(2n,n) gives A261238.
%Y Cf. A135302.
%K nonn,tabl
%O 0,6
%A _Alois P. Heinz_, Dec 05 2007