login
p^5 - p^3 - p^2. Exponents are the prime numbers in decreasing order and p is the n-th prime.
1

%I #10 Sep 08 2022 08:45:32

%S 20,207,2975,16415,159599,368927,1414655,2468879,6423647,20485919,

%T 28598399,69291935,115785599,146927087,229238975,418043807,714715439,

%U 844365599,1349819855,1803866399,2072677247,3076557119,3938461967,5583346559,8586418175,10509059999,11591637407,14024280815,15384932639

%N p^5 - p^3 - p^2. Exponents are the prime numbers in decreasing order and p is the n-th prime.

%H Vincenzo Librandi, <a href="/A135179/b135179.txt">Table of n, a(n) for n = 1..200</a>

%F p=A000040(n): a(n)= p^5 - p^3 - p^2 = A050997(n) - A030078(n) - A001248(n).

%e a(4)=16415 because the 4th prime number is 7, 7^5=16807, 7^3=343, 7^2=49 and 16807-343-49=16415.

%t Table[p^5 - p^3 - p^2, {p, Prime[Range[20]]}] (* _Vincenzo Librandi_, May 24 2014 *)

%o (Magma)[p^5-p^3-p^2: p in PrimesUpTo(200)]; // _Vincenzo Librandi_, Dec 14 2010

%K nonn,easy

%O 1,1

%A _Omar E. Pol_, Nov 25 2007

%E More terms from _Vincenzo Librandi_, Dec 14 2010