login
a(n) = denominator of Product_{j=1..n} 1/(1 + 1/A134473(j)).
5

%I #9 Sep 13 2015 20:29:23

%S 3,33,4389,54580141,2166761528097045187,

%T 525888246710053092756770266260096718495,

%U 85044441430633398942448813011607889701451771024726384367542315571820259496552289000

%N a(n) = denominator of Product_{j=1..n} 1/(1 + 1/A134473(j)).

%C The numerator of Product_{j=1..n} 1/(1 + 1/A134473(j)) is A134476(n). A134476(n)/A134477(n) approaches a constant (0.6037789...) as n approaches infinity.

%p Digits := 220 ; A134473 := proc(n) option remember ; local su,mu ; if n =1 then 2; else su := add(1/procname(k),k=1..n-1) ; mu := mul(1/(1+1/procname(j)),j=1..n-1) ; ceil( (1+su+sqrt((su-1)^2+4*mu))/2/(mu-su) ) ; fi; end: A134477 := proc(n) mul(1/(1+1/A134473(k)),k=1..n) ; denom(%) ; end: seq(A134477(n),n=1..9) ; # _R. J. Mathar_, Jul 20 2009

%Y Cf. A134473, A134474, A134475, A134476.

%K frac,nonn

%O 1,1

%A _Leroy Quet_, Oct 27 2007

%E More terms from _R. J. Mathar_, Jul 20 2009