|
|
A134381
|
|
Row sums of triangle A134380.
|
|
2
|
|
|
1, 2, 5, 15, 52, 205, 921, 4766, 28685, 201159, 1630840, 15071725, 156331161, 1794763970, 22548418541, 307236496071, 4507944378004, 70813851019717, 1185225078743601, 21049903662123422, 395303080572770549, 7825181077750155999, 162835332607069248760
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
LINKS
|
Vaclav Kotesovec, Table of n, a(n) for n = 0..150
|
|
FORMULA
|
Binomial transform of A051295.
G.f.: (1 + x/((1-x)*S(0) -x))/(1-x), where S(k)= 1 - (k+1)*x/(1 - x - (k+1)*x/S(k+1)); (continued fraction). - Sergei N. Gladkovskii, Feb 05 2015
a(n) ~ exp(1) * (n-1)!. - Vaclav Kotesovec, Feb 06 2015
|
|
EXAMPLE
|
a(3) = 15 = (1, 3, 3, 1) dot (1, 1, 2, 5) = (1, + 3 + 6 + 5), where A051295 = 1, 1, 2, 5, 15, 54, 235,...)
|
|
MATHEMATICA
|
max = 20; Clear[g]; g[max + 2] = 1; g[k_] := g[k] = 1 - (k+1)*x/(1 - x - (k+1)*x/g[k+1]; gf = (1 + x/((1-x)*g[0] -x))/(1-x); CoefficientList[Series[gf, {x, 0, max}], x] (* Vaclav Kotesovec, Feb 06 2015, after Sergei N. Gladkovskii *)
|
|
CROSSREFS
|
Cf. A134380, A051295.
Sequence in context: A303924 A336021 A186001 * A107589 A249892 A006790
Adjacent sequences: A134378 A134379 A134380 * A134382 A134383 A134384
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Gary W. Adamson, Oct 22 2007
|
|
EXTENSIONS
|
More terms from Vaclav Kotesovec, Feb 06 2015
|
|
STATUS
|
approved
|
|
|
|