login
A134146
Triangle of numbers obtained from the partition array A134145.
5
1, 3, 1, 15, 3, 1, 105, 24, 3, 1, 945, 150, 24, 3, 1, 10395, 1485, 177, 24, 3, 1, 135135, 14805, 1620, 177, 24, 3, 1, 2027025, 191520, 16425, 1701, 177, 24, 3, 1, 34459425, 2687580, 208125, 16830, 1701, 177, 24, 3, 1, 654729075, 44552025, 2880360, 212985
OFFSET
1,2
COMMENTS
This triangle is named S2(3)'.
In the same manner the unsigned Lah triangle A008297 is obtained from the partition array A130561.
FORMULA
a(n,m)=sum(product(S2(3;j,1)^e(n,m,q,j),j=1..n),q=1..p(n,m)) if n>=m>=1, else 0. Here p(n,m)=A008284(n,m), the number of m parts partitions of n and e(n,m,q,j) is the exponent of j in the q-th m part partition of n. S2(3;j,1)= A001147(j) = A035342(j,1) = (2*j-1)!!.
EXAMPLE
[1]; [3,1]; [15,3,1]; [105,24,3,1]; [945,150,24,3,1];...
CROSSREFS
Cf. A134147 (row sums).
Cf. A134148 (allternating row sums).
Cf. A134134 (k=2 member of this triangle family).
Sequence in context: A108083 A163239 A134145 * A085569 A336454 A261671
KEYWORD
nonn,easy,tabl
AUTHOR
Wolfdieter Lang, Nov 13 2007
STATUS
approved