This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A133611 A triangular array of numbers related to factorization and number of parts in Murasaki diagrams. 1
 1, 1, 1, 2, 2, 1, 5, 5, 4, 1, 15, 15, 14, 7, 1, 52, 52, 51, 36, 11, 1, 203, 203, 202, 171, 81, 16, 1, 877, 877, 876, 813, 512, 162, 22, 1, 4140, 4140, 4139, 4012, 3046, 1345, 295, 29, 1, 21147, 21147, 21146, 20891, 17866, 10096, 3145, 499, 37, 1, 115975, 115975, 115974, 115463, 106133, 72028 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,4 COMMENTS When the Bell multisets are encoded as described in A130274, the seven case in the example can be coded as 19578, 15942, 30873, 26427, 35642, 29491 and 32938. LINKS Robert Israel, Table of n, a(n) for n = 1..10011 FORMULA Equals A048993 * A000012 - Gary W. Adamson, Jan 29 2008 That is, T(i,j) = Sum_{k=j..i} A048993(i,k) for 0 <= j <= i. - Robert Israel, Nov 01 2018 EXAMPLE The array begins 1 1 1 2 2 1 5 5 4 1 15 15 14 7 1 52 52 51 36 11 1 ... a(14) = 7 because only seven of the 52 Bell multisets can be generated by attaching a new stroke to the third element in the set of diaqrams with four strokes. MAPLE T:= proc(i, j) add(combinat:-stirling2(i, k), k=j..i) end proc: seq(seq(T(i, j), j=0..i), i=0..15); # Robert Israel, Nov 01 2018 CROSSREFS Cf. A000110 (row sums), A137650, A130274, A211561. Cf. A048993. Sequence in context: A108087 A123158 A185414 * A010094 A019710 A118806 Adjacent sequences:  A133608 A133609 A133610 * A133612 A133613 A133614 KEYWORD nonn,tabl AUTHOR Alford Arnold, Sep 18 2007 EXTENSIONS Definition not clear to me - N. J. A. Sloane, Sep 18 2007 More terms from Robert Israel, Nov 01 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 26 03:51 EDT 2019. Contains 323579 sequences. (Running on oeis4.)