login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A133376
a(n) = (...((2^3)^4)^...)^n.
1
2, 8, 4096, 1152921504606846976, 2348542582773833227889480596789337027375682548908319870707290971532209025114608443463698998384768703031934976
OFFSET
2,1
COMMENTS
Another kind of exponential factorial.
See cross-references for other possible definitions of exponential factorials.
Some other terms of the sequence can be computed, but they are quite large and it wouldn't be very convenient to display them.
The next term has 759 digits. - Harvey P. Dale, Oct 22 2019
LINKS
FORMULA
a(n) = 2^(n!/2) for n >= 2. - Karl W. Heuer, Nov 25 2014
EXAMPLE
a(4) = 4096, as (2^3)^4 = 4096.
MAPLE
expfact:= proc(n::integer) local i, res; res:=2; for i from 3 to n do res:=(res)^i od; res end proc; seq(expfact(n), n=2..7);
# second Maple program:
a:= proc(n) option remember;
`if`(n<3, n, a(n-1)^n)
end:
seq(a(n), n=2..6); # Alois P. Heinz, Jan 17 2024
MATHEMATICA
nxt[{n_, a_}]:={n+1, a^(n+1)}; NestList[nxt, {2, 2}, 4][[All, 2]] (* Harvey P. Dale, Oct 22 2019 *)
CROSSREFS
Sequence in context: A174736 A324567 A135238 * A179056 A160814 A038582
KEYWORD
nonn
AUTHOR
Pierre Karpman (pierre.karpman(AT)laposte.net), Oct 28 2007
STATUS
approved