login
A133353
Dimensions of certain Lie algebra (see reference for precise definition).
1
1, 945, 219912, 21488544, 1139660280, 38177564139, 892057462725, 15580701253260, 213956841238140, 2399777401421400, 22644486186626304, 184024677027809280, 1312566991805977344, 8344965320236093032, 47903608753899166620, 250980634154501770596
OFFSET
0,2
LINKS
J. M. Landsberg and L. Manivel, The sextonions and E7 1/2, Adv. Math. 201 (2006), pp. 143-179. [Th. 7.2(iii), case a = 6]
MAPLE
b:=binomial; t72c:= proc(a, k) ((4*k+3*a+2)/((3*a+2)*(k+1))) * b(k+a, k)*b(k+a+1, k)*b(k+3*a/2-1, k)*b(k+3*a/2, k)*b(2*k+2*a+1, 2*k)/ (b(k+a/2-1, k)*b(k+a/2, k)*b(2*k+a, 2*k)); end; [seq(t72c(6, k), k=0..40)];
MATHEMATICA
t72c[a_, k_] := (4k+3a+2) / ((k+1)(3a+2)) Binomial[k+a, k] Binomial[k+a+1, k] Binomial[k+3/2a-1, k] Binomial[k+3/2a, k] Binomial[2k+2a+1, 2k] / (Binomial[k+a/2-1, k] Binomial[k+a/2, k] Binomial[2k+a, 2k]);
Array[t72c[6, #]&, 30, 0] (* Paolo Xausa, Jan 09 2024 *)
CROSSREFS
Sequence in context: A289953 A112491 A263889 * A322252 A351806 A119240
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Oct 20 2007
STATUS
approved