

A133214


Delannoy paths counted by number of weak peaks.


1



1, 1, 2, 1, 8, 4, 1, 18, 36, 8, 1, 32, 144, 128, 16, 1, 50, 400, 800, 400, 32, 1, 72, 900, 3200, 3600, 1152, 64, 1, 98, 1764, 9800, 19600, 14112, 3136, 128, 1, 128, 3136, 25088, 78400, 100352, 50176, 8192, 256, 1, 162, 5184, 56448, 254016, 508032, 451584, 165888, 20736, 512
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,3


COMMENTS

T(n,k) = number of Delannoy paths (A001850) of size n with k weak peaks. A (central) Delannoy path is a lattice path of upsteps U=(1,1), downsteps D=(1,1) and horizontal steps H=(2,0) that starts at the origin and ends on the xaxis. Its size is #Us + #Hs. Thus a Delannoy path of size n ends at the point (2n,0). A weak peak is a UD or an H.


LINKS

G. C. Greubel, Rows n = 0..50 of the triangle, flattened
See Example 3 in Robert A. Sulanke, Objects Counted by the Central Delannoy Numbers, Journal of Integer Sequences, Volume 6, 2003, Article 03.1.5.


FORMULA

T(n, k) = 2^k binomial(n,k)^2.
G.f.: Sum_{n>=k>=0} T(n,k) x^n y^k = 1/Sqrt((1x)^2  4*x*y*(1+xx*y)).
Row sums are the central Delannoy numbers A001850.


EXAMPLE

Table begins:
\ k.0...1....2....3....4....5
n\
0 .1
1 .1...2
2 .1...8....4
3 .1..18...36....8
4 .1..32..144..128...16
5 .1..50..400..800..400...32
T(2,1) = 8 counts the paths UUDD, UDDU, UHD, DUUD, DUDU, DUH, DHU, HDU
because each contains a single UD or a single H but not both.


MATHEMATICA

Table[2^k*Binomial[n, k]^2, {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, Jun 06 2021 *)


PROG

(Sage) flatten([[2^k*binomial(n, k)^2 for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jun 06 2021


CROSSREFS

Cf. A001850 (row sums).
Sequence in context: A099379 A234014 A208931 * A191935 A156365 A142075
Adjacent sequences: A133211 A133212 A133213 * A133215 A133216 A133217


KEYWORD

nonn,tabl


AUTHOR

David Callan, Dec 18 2007


STATUS

approved



