login
a(1)=2. a(n) = a(n-1) + (number of terms, from among terms a(1) through a(n-1), which are prime).
4

%I #21 Mar 07 2024 11:13:13

%S 2,3,5,8,11,15,19,24,29,35,41,48,55,62,69,76,83,91,99,107,116,125,134,

%T 143,152,161,170,179,189,199,210,221,232,243,254,265,276,287,298,309,

%U 320,331,343,355,367,380,393,406,419,433,448,463,479,496,513,530,547

%N a(1)=2. a(n) = a(n-1) + (number of terms, from among terms a(1) through a(n-1), which are prime).

%C By Dirichlet's Theorem, there are an infinite number of primes in this sequence.

%H Reinhard Zumkeller, <a href="/A131073/b131073.txt">Table of n, a(n) for n = 1..10000</a>

%F a(n+1) = a(n) + Sum_{k=1..n} A010051(a(k)). - _Reinhard Zumkeller_, Nov 15 2011

%e There are 5 primes (2,3,5,11,19) among the first 7 terms of the sequence. So a(8) = a(7) + 5 = 24.

%t f[lst_] := Append[lst, Last@lst + Length@ Select[lst, PrimeQ@# &]]; Nest[f, {2}, 56] (* _Robert G. Wilson v_, Jul 02 2007 *)

%o (Haskell)

%o a131073 n = a131073_list !! (n-1)

%o a131073_list = 2 : f 2 1 where

%o f x c = y : f y (c + a010051 y) where y = x + c

%o -- _Reinhard Zumkeller_, Nov 15 2011

%Y Cf. A010051, A097602.

%K nonn

%O 1,1

%A _Leroy Quet_, Jun 13 2007

%E More terms from _Robert G. Wilson v_, Jul 02 2007