login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A131040 a(n) = (1/2+1/2*i*sqrt(11))^n + (1/2-1/2*i*sqrt(11))^n, where i=sqrt(-1). 3
1, -5, -8, 7, 31, 10, -83, -113, 136, 475, 67, -1358, -1559, 2515, 7192, -353, -21929, -20870, 44917, 107527, -27224, -349805, -268133, 781282, 1585681, -758165, -5515208, -3240713, 13304911, 23027050, -16887683, -85968833, -35305784 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Generating floretion is 1.5i' + .5j' + .5k' + .5e whereas in A131039 it is 'i + .5i' + .5j' + .5k' + .5e

Essentially the Lucas sequence V(1,3). - Peter Bala, Jun 23 2015

LINKS

Table of n, a(n) for n=0..32.

Wikipedia, Lucas sequence

FORMULA

a(n) = a(n-1) - 3*a(n-2); G.f. (1 - 6*x)/(1 - x + 3*x^2).

a(n) = [x^n] ( (1 + x + sqrt(1 + 2*x - 11*x^2))/2 )^n. - Peter Bala, Jun 23 2015

MAPLE

Floretion Algebra Multiplication Program, FAMP Code: 2tesseq[ 1.5i' + .5j' + .5k' + .5e]

PROG

(Sage) [lucas_number2(n, 1, 3) for n in xrange(1, 34)] # Zerinvary Lajos, May 14 2009

CROSSREFS

Cf. A131039, A131041, A131042, A002316, A002531.

Sequence in context: A053787 A039678 A259234 * A231786 A007450 A200297

Adjacent sequences:  A131037 A131038 A131039 * A131041 A131042 A131043

KEYWORD

easy,sign

AUTHOR

Creighton Dement, Jun 11 2007

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified August 22 22:36 EDT 2017. Contains 290952 sequences.