This site is supported by donations to The OEIS Foundation.

 Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS". Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A131040 a(n) = (1/2+1/2*i*sqrt(11))^n + (1/2-1/2*i*sqrt(11))^n, where i=sqrt(-1). 3
 1, -5, -8, 7, 31, 10, -83, -113, 136, 475, 67, -1358, -1559, 2515, 7192, -353, -21929, -20870, 44917, 107527, -27224, -349805, -268133, 781282, 1585681, -758165, -5515208, -3240713, 13304911, 23027050, -16887683, -85968833, -35305784 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Generating floretion is 1.5i' + .5j' + .5k' + .5e whereas in A131039 it is 'i + .5i' + .5j' + .5k' + .5e Essentially the Lucas sequence V(1,3). - Peter Bala, Jun 23 2015 LINKS Wikipedia, Lucas sequence FORMULA a(n) = a(n-1) - 3*a(n-2); G.f. (1 - 6*x)/(1 - x + 3*x^2). a(n) = [x^n] ( (1 + x + sqrt(1 + 2*x - 11*x^2))/2 )^n. - Peter Bala, Jun 23 2015 MAPLE Floretion Algebra Multiplication Program, FAMP Code: 2tesseq[ 1.5i' + .5j' + .5k' + .5e] PROG (Sage) [lucas_number2(n, 1, 3) for n in xrange(1, 34)] # Zerinvary Lajos, May 14 2009 CROSSREFS Cf. A131039, A131041, A131042, A002316, A002531. Sequence in context: A053787 A039678 A259234 * A231786 A007450 A200297 Adjacent sequences:  A131037 A131038 A131039 * A131041 A131042 A131043 KEYWORD easy,sign AUTHOR Creighton Dement, Jun 11 2007 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.