%I #7 Aug 09 2015 01:38:36
%S 1,1,1,1,2,1,1,3,3,1,1,4,7,4,1,1,5,13,13,5,1,1,6,21,30,21,6,1,1,7,31,
%T 57,57,31,7,1,1,8,43,96,123,96,43,8,1,1,9,57,149,231,231,149,57,9,1,1,
%U 10,73,218,395,478,395,218,73,10,1
%N Triangular sequence based on Pascal's triangle: t(n,m) = 2*binomial(m, n) - (1 + n*(m - n)).
%C Suggested by _Gary W. Adamson_ from a previous submission. Very close to (but slightly smaller at 7th row) A086617.
%F t(n,m) = 2*binomial[m, n] - (1 + n*(m - n)).
%e {1},
%e {1, 1},
%e {1, 2, 1},
%e {1, 3, 3, 1},
%e {1, 4, 7, 4, 1},
%e {1, 5, 13, 13, 5, 1},
%e {1, 6, 21, 30, 21, 6, 1},
%e {1, 7, 31, 57, 57, 31, 7, 1}
%t Table[Table[2*Binomial[m, n] - (1 + n*(m - n)), {n, 0, m}], {m, 0, 10}] Flatten[%]
%Y Cf. A086617.
%K nonn,tabl
%O 1,5
%A _Roger L. Bagula_ and _Gary W. Adamson_, Jun 27 2007