login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A130560 Numerators of Sheffer a-sequence for Jabotinsky type triangle S2(3):=A035342. 1
1, 3, 1, -3, 3, -15, 45, -315, 315, -2835, 14175, -155925, 467775, -6081075, 42567525, -638512875, 638512875, -10854718875, 97692469875, -1856156927625, 9280784638125, -194896477400625, 2143861251406875, -49308808782358125, 147926426347074375, -3698160658676859375 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

This rational a-sequence leads to the following recurrence for triangle S2(3):=A035342: A035342(n,m)=(n/m)*sum(binomial(m-1+j,m-1)*a(j)*A035342(n-1,m-1+j),j=0..n-m), n>=m>=1.

For the notion of the a-sequence for a Sheffer matrix see the W. Lang link under A006232. Here the a-sequence is called r(n) because it is a sequence of rationals.

Denominators are numerators of (2^n)/n!, see A001316 and the M. Bouayoun comment.

For the notion of the a-sequence for a Sheffer matrix see the W. Lang link under A006233. Here the a-sequence is called r(n) because it is a sequence of rationals.

LINKS

Table of n, a(n) for n=0..25.

W. Lang, Rationals.

FORMULA

E.g.f.: (1+x)^2/(1+x/2).

a(n)=numerator(r(n)), n>=0, with r(0)=1, r(1)=3/2, r(n)=((-1)^n)*n!/2^n, n>=2.

EXAMPLE

Rationals: [1, 3/2, 1/2, -3/4, 3/2, -15/4, 45/4, -315/8, 315/2, -2835/4,...].

CROSSREFS

Cf. A006232/A006233 (a-sequence for S2(1):= Stirling2 = A048993 triangle).

a-sequence for S2(2):=A105278 is [1, 1, 0, 0, 0, ...].

Sequence in context: A163270 A098743 A283484 * A088105 A030708 A095709

Adjacent sequences:  A130557 A130558 A130559 * A130561 A130562 A130563

KEYWORD

sign,easy

AUTHOR

Wolfdieter Lang Jul 13 2007

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 19 10:36 EDT 2019. Contains 323390 sequences. (Running on oeis4.)