login
A130516
In triangular peg solitaire, number of distinct solvable feasible pairs starting with one peg missing and finishing with one peg.
2
0, 0, 1, 12, 29, 27, 80, 125, 108, 260, 356, 300, 637, 832, 675, 1341, 1665, 1323, 2500, 3025, 2352, 4304, 5072, 3888, 6929, 8036, 6075, 10625, 12125, 9075, 15616, 17629, 13068, 22212, 24804, 18252, 30685, 34000, 24843, 41405, 45521
OFFSET
2,4
COMMENTS
Coincides with A130515 for n >= 6.
LINKS
George I. Bell, Solving Triangular Peg Solitaire [arXiv:math/0703865v4]
G. I. Bell, Solving Triangular Peg Solitaire, JIS 11 (2008) 08.4.8
FORMULA
Reference gives an explicit formula for a(n).
CROSSREFS
Cf. A130515.
Sequence in context: A203026 A189539 A000546 * A045554 A174649 A161452
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Aug 09 2007
EXTENSIONS
More terms from George I. Bell (gibell(AT)comcast.net), Sep 27 2007
STATUS
approved